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Introduction
Large part of medical practice today is a set of wholesale treatments 

and diagnostics driven by guidelines and protocols. It is clear however, 
that given the individual differences, the approach to particular 
patient should be more personalized. Personalized medicine has to do 
with identifying the differences and tailoring treatment strategy to a 
particular individual. One way to address it is to use decision support 
systems based on prediction modeling of individual patient outcome. 
Generally, decision support systems, and in particular prediction 
models are inferior to a physician making a prediction [1]. As such, 
decision support systems should not compete with physicians making 
a decision, but instead contribute by providing quantified prediction 
data based on recent literature, especially in the context of uncertainty 
and limited time [2]. Demographics, comorbidities, genetic differences 
would make individuals behave and respond to the particular 
illness and medical interventions differently, so that the combined 
effect can be quantified by using prediction models with individual 
patient parameters. Techniques to quantify these differences in a 
form of generating prediction models of the individual outcome are 
underdeveloped. Part of the reason is that developing prediction model 
or risk stratification algorithm is a time and labor consuming process 
[3]. At the same time, the amount of quantified medical information 
being generated in the form of outcome clinical studies is massive and 
makes it difficult for professionals to follow the most recent trends. 
Furthermore, reports demonstrating statistical associations between 
particular variables and the outcome, effect of medications on the 
outcome do not become integrated part of the electronic tools available 
to practitioner, and these research data become largely underused. 

While the amount of data is increasing, the implementation of new 
knowledge remains slow and the time from “bench to bedside” is 
quite long. As a result scientific papers generally do not have much 
of an immediate practical impact. Moreover, clinical studies are 
limited to the population that was studied, inclusion and exclusion 
criteria, so extrapolating it to other, even similar populations might 
present a challenge [4]. Similar generalizability problem has to do with 
aging data, in other words, data sources used for prediction model 
development are at least several year old, so prospective use of these 
prediction models is a potential problem. Prediction model that can be 
easily adjusted to the new population would be of value as it will not be 
a subject to these limitations. 

We propose that rather than developing prediction algorithms 
from raw data one might tap into published reports for information 
that has already been processed. Number of approaches was used to 
develop the practical risk score or risk-stratification tool. The most 
intuitive approach is a risk factor counting, where each risk factor 
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Abstract
Background: Developing medical prediction models remains time and labor consuming. We propose the approach 

where information collected from published epidemiological outcome studies is quickly converted into prediction models. 

Methods: We used general expressions for regression models to derive prediction formulae defining the probability 
of the outcome and relative risk indicator. Risk indicator (R) is calculated as a linear combination of predictors multiplied 
by regression coefficients and then is placed on the scale of 0 to 10 for interpretability. Prediction expression for the 
probability (P) of the outcome is derived from general expression for logistic regression and proportional hazard models. 
The intercept is calculated based upon the outcome rate in the population and the risk indicator assigned to a subject 
representing mean characteristics of the population (Ȓ). We also consider linear expression where probability of outcome 
is the product of risk indicator and the ratio of observed outcome rate and Ȓ.

Results: These models were explored and compared in a numeric simulation exercise and also using real data 
obtained from NHANES dataset. All three expressions generate very similar predictions in the lower categories of risk 
indicator. In the groups with the higher value of risk indicator linear expression tends to predict lower probability than 
exponential expressions and also lower than observed. 

Conclusions: We demonstrated simple technique (named Woodpecker™) that might allow deriving functional 
prediction model and risk stratification tool from the report of clinical outcome study using multivariate regression model. 
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Predicting absolute value of the outcome or the probability 
of the event

While calculating R is fairly intuitive, it is more complicated to 
convert it into actual value of probability of outcome. Conceptually, R 
is based purely on individual characteristics and determines individual 
risk relative to other members of the group. To convert this relative 
indicator into absolute probability of the outcome one has to use 
population characteristics (i.e., descriptive statistics of the predictors 
and overall outcome rate) and project individual risk on the population 
scale. 

Continuous outcome: Continuous outcome is predicted by linear 
regression model: P(R) = a + R, where a is the intercept. If the intercept 
is not reported it can be derived from descriptive statistics: a = y-(b1 
z1 + b2 z2 + ⋯+bi zi,) assuming that y is equal to the reported outcome 
rate and z - values of the predictors equal to their population mean (for 
continuous) or fraction of total (for categorical variables).

Categorical outcome: We considered three approaches to 
derive the probability of categorical outcome from R and population 
characteristics. Categorical outcome is predicted by either 
logistic regression or Cox regression model, in addition there 
is a simplified calculation based on assumed linear relationship 
between R and P. 

Simplified linear calculation: To derive estimated probability of 
outcome the assumption is made of linear relationship between risk 
indicator (R) and the probability of the outcome (P) as follows: R

rR
P

= . 

The estimated probability P ( ) R rR
R

=


  , where r is the outcome rate in the 
target population and Ȓ is the target population mean R. The intercept 
in this linear expression is ignored. Ȓ is calculated as a risk indicator 
for a person with “average” characteristics: 1 1 2 2 = + +…+ i ib z b z b z , 
where zi - values of the predictors equal to their mean (for continuous) 
or fraction of total (for categorical). 

Logistic regression: We start with general expression for logistic 
regression: ln
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of regression coefficients. While R is based only on individual 
characteristics, the conversion of R into actual probability of outcome 
is defined by the population characteristics (Ȓ and r). 

Therefore a ( )1 1 2 2 
1

.
1i i

r rln b z b z b z ln
r r

R= − + +…+ = −
− −



Proportional hazard model (Cox regression): Proportional 
hazard model is based on survival function S(t) = 1-F(t) (probability 
of surviving at a given point in time); f(t), the probability of death at a 

particular time point; ( ) ( )dF t
f t

dt
= ; and also hazard function h(t), which 

is a conditional probability of death ( ) ( ) ( )1 1 2 2
0

i ix x xh t h t eβ β β+ …+= ⋅  where 
h0 (t)∙ is the baseline hazard (does not depend on independent variables, 
but only on time – it is equal to a hazard when all regression coefficients 

are equal to zero). Starting with ( )( ) ( ) ( )1 1 2 2
0

i ix x xd logS t
h t e

dt
β β β+ …+−

= ⋅  

we derive the expression for predicted probability of outcome 

( ) ( ) ( )1
R

Tq eF t P R e− ⋅
= = − or ( ) ( ) 1 2

1 21
x x xi

T iq HR HR HRF t P R e− ⋅ ⋅ ⋅…⋅= = −  if hazard 
ratios were used instead of regression coefficients. To derive baseline 
hazard function we use the same technique as described above. 
Therefore, using the baseline statistics of the study and assuming that 
the outcome rate in the population (r) corresponds to mean risk (Ȓ) 

present in a subject adds another point to the risk score [5]. Somewhat 
more sophisticated approach is weighted addition of the risk factors. 
In that case points proportional to the regression coefficients are 
assigned to every risk factors and then added together [6,7] to comprise 
a final prediction score. The risk scores in the study population then 
examined and the range of scores is divided into several groups (e.g., 
low, intermediate, and high risk) [8]. 

Our vision is to use the information collected from the published 
epidemiological outcome studies and using mathematical expressions 
described below and named Woodpecker™ convert them into a line of 
prediction models and further into electronic tools that can be used 
in everyday practice. These tools can be integrated into electronic 
medical record systems, using existing patient information to populate 
input points and generate automated quantified predictions. In this 
report we describe the technique to derive prediction models and risk 
stratification tools from the results of multivariate analysis including 
those published in literature. 

Methods
Assumptions

The performance of predictions drawn from statistical inference 
using Woodpecker™ technique is based on the validity of several 
assumptions. Some of the assumptions are the reflections of 
relationships between variables in the multivariate models, and in an 
ideal case scenario should be tested by the authors of the reports used to 
generate prediction models. Specifically, multivariate models are based 
on the assumptions of linearity, independence (lack of colinearity), 
and lack of interaction between the predictors. Additional distribution 
assumption regarding normality in the data is important for certain 
steps of the technique. These assumptions should be kept in mind by the 
reader interpreting results of the prediction modeling. Extrapolation of 
the model should also be mentioned. The need for extrapolation of the 
model arises from inevitable differences between the study population 
(defined as the population used to develop prediction model) and 
target population (the population used to validate the model or the 
population from which cases for prospective predictions are drawn). 
While the assumption being made that the populations are very 
similar, it might not always be the case. Therefore the model should 
ether be applied to the cases or the population that is closely resembles 
the study cohort (e.g., age, racial composition, comorbidities, etc.), or it 
should be able to be easily adjusted to a new population - the approach 
discussed below.

Calculating risk indicator

The risk for individual subject (R) for any of the models described 
below is calculated as a sum of the products of regression coefficients 
and the values of the predictors: R 1 1 2 2 i ib x b x b x= + +…+ . For easier 
interpretation by the user the result will be related to a scale of 0 to 
10 (Rscaled). We calculate lower end of the scale (L) using the values 
of predictors (xi) corresponding to lowest risk (e.g., hypothetical 
patient 18 years old without comorbidities). Similarly to calculate the 
upper end of the scale (U) we use the data (xi) of a hypothetical “high 
risk” patient (e.g., hypothetical patient 100 years old with multiple 
comorbidities). The calculated risk for individual patient on the scale of 

0-10: ( ) ( ) ( )10 0 10
scaled

R L R L
R

U L U L
− ⋅ − ⋅ −

= =
− −

. It is important to note that 

this risk indicator is based on the relative scale (e.g., 0 to 10), in other 
words, the risk of 10 does not mean that the probability of the outcome 
is 100%, but rather higher than average risk of reaching the outcome. 
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one can calculate baseline hazard as ( ) ( )
1 1 2( 2 )

ln 1 ln 1
i iT z z z R

r r
q

e eβ β β+ …+

− −
= − = −   . 

Real data validation

To generate prediction model we used previously published report 
by McCullough et al. [9], with data collected from January 1, 2000, 
through December 31, 2003 of subjects from 42 National Kidney 
Foundation affiliates in 49 states. The outcome of the study was 
mortality, the rate of which in the study population was 0.0051. 

For the target (validation) dataset we used the data of adult ( ≥18 
years old) subjects from the National Health and Nutrition Examination 
Survey (NHANES) cohort which initially included 29,402 subjects 
enrolled between 1999 and 2004 with mortality information available 
through December 31, 2006. It is recognized that data collection for 
NHANES was based on a oversampling of children, females, older 
persons, black persons, and Mexican Americans. Files covering 1999-
2000 (n = 9,965), 2001-2002 (n =11,039), and 2003-2004 (n = 10,122) 
were merged and variable name inconsistencies were corrected in the 
merged dataset. We deleted records missing estimated glomerular 
filtration rate (eGFR) value, mortality information or any of the five 
predictor values used in the model. Furthermore, we deleted records of 
those subjects who were followed for less than 2 years, so that the final 
dataset consisted of 12,515 subject records from 1999-2004.

Predictors and outcome definition

Variables used in prediction were defined in NHANES records 
as follows: presence of diabetes mellitus was based on questionnaire 
variable DIQ010 (“Doctor told you have diabetes”) or DIQ050 
(“Taking insulin now”); urine albumin-to-creatinine ratio was 
calculated from urine albumin concentration (variable URXUMASI) 
and urine creatinine concentration (URXUCR). Presence of CKD 
stage 3 or above was based on estimated glomerular filtration rate 
(eGFR) by MDRD expression [10]: eGFR = 175*(Serum creatinine(-

1.154))*(Age in years(-0.203)) * 0.742 if female * 1.212 if black. The stage 
of CKD has been assigned using NKF-KDOQI classification based 
on eGFR [11]. The presence of CVD was defined based upon at least 
one of the following four variables being positive: MCQ160C (“Ever 
told you had coronary heart disease”) or MCQ160D (“Ever told you 
had angina/angina pectoris”) or MCQ160E (“Ever told you had heart 
attack”) or MCQ160F (“Ever told you had a stroke”). Age was not used 
as a predictor in this model.

Mortality data (from the date of survey participation through 
December 31, 2006) linked to the NHANES files were obtained from 
the CDC website. 

Risk stratification tool

The calculation of risk indicator (R) is based on following predictors: 
male sex (HR 2.07), diabetes mellitus (HR 1.67), albuminuria>30 mg/dl 
(HR 1.77), prevalent chronic kidney disease of stage 3 and above (CKD; 
HR 1.98), prevalent cardiovascular disease (CVD; HR 3.02), and the 
combination of CKD and CVD (HR 3.8) [9]. 

To calculate the risk indicator, we first derived regression 
coefficients (as a natural logarithm of hazard ratios): 0.73, 0.51, 0.57, 
0.68, 1.11, 1.34, respectively, for male sex, diabetes, albuminuria, CKD 
alone, CVD alone, and CKD with CVD the predictors listed above. 

To establish a scale for the relative risk indicator we calculated 
upper (U) and lower (L) ends of the risk scale as follows: L,U = b1 x1+b2 
x2+⋯+bi xi using imaginable examples of the subject with the lowest 

possible and highest possible risk of the outcome. The former is a 
subject with no comorbidities (and therefore L = 0), and the latter is the 
one with all comorbidities used in the model (U = 3.15). To scale the 
risk indicator from 0 to 10 all coefficients were multiplied by 3.175 and 
as a result the risk indicator was calculated as a sum of following factors: 
for male gender - add 1.8, for diabetes add 1.3, for albuminuria>30 add 
1.4, for CKD add 1.7, for CVD add 2.8, for the combination of CKD 
and CVD add 3.3 (last three categories are mutually exclusive).

Calculating the probability of event

The probability of the outcome (P) can be derived from the risk 
indicator using standard regression model expressions. The probability 
is the function of the risk indicator R (prior to scaling), the outcome rate 
in the target population (r; which is 0.0174 in this particular example) 
and a descriptive statistics of the predictors used in the model. We used 
descriptive statistics to estimate the mean R in the population (Ȓ) as 
follows. We assumed that Ȓ is equal to the risk indicator calculated 
for imaginable individual with characteristics equal to the means of 
the target population (age = 48.9, male sex = 0.48, presence of diabetes 
= 0.095, etc. as shown on Table 1. Using this approach for our target 
population Ȓ = 0.6175. 

We used three different expressions to calculate the predicted 
probability of the outcome derived from general expressions for 
regression models as described above.

•	 Linear expression ( ) ·0.028179R rP R R
R
⋅

= =

•	 Exponential (logistic) ( )
( )( ) 1

1

1 a R
P R

e
−+

=
+

, where a is the 

intercept: 4.65121
1

Rra ln
r

= − = −
−



•	 Exponential (Cox) ( ) ( )1
R

Tq eP R e− ⋅
= − , where qT is baseline 

hazard: ( )ln 1
0.009466T R

r
q

e
−

= − =

Validation and statistical analysis

Variables were summarized using means and standard deviations 
for continuous and percent of total for categorical variables. To quantify 
goodness of fit of our prediction models we used area under the ROC 

Mean (SD) or % of total 
for categorical variables

Range: 
minimum - 
maximum

95% CL 
for mean

Age (years) 48.9 (18.1) 20.0 - 84.9 48.5 - 49.2

Sex
     Male
     Female

48%
52%

Race
     Non-Hispanic White
     Non-Hispanic Black
     Mexican American
     Other Hispanic
     Other

50.2%
18.9%
23.4%
4.6%
2.9%

Presence of diabetes 9.5%

Presence of CVD 6.8%

Presence of CKD 5.4%

Presence of CKD + 
CVD 2.8%

Urine albumin-to-
creatinine ratio (mg/g) 46.9 (400.0) 0.1 – 16636.4 39.9 – 

53.9

Table 1: Baseline characteristics of the target population of 12,544 patients derived 
from NHANES [20].
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curve. We divided the entire population based upon calculated risk into 
four categories: Low Risk (R=0-1.0), Low Intermediate Risk (R>1.0-
3.0), High Intermediate Risk (R>3.0-6.0), and High Risk (R>6.0). 
The predicted outcome probability in each group was compared to 
calculated mortality rate.

Statistical analysis was performed using the SAS software version 
9.3 (SAS Institute, Cary, North Carolina).

Results
We compared the prediction results of three models in a numeric 

simulation exercise. We used an imaginable population with the 
following characteristics similar to the group described in reference 
[9]: subjects are 48% males, 9.5% had diabetes mellitus, 11.7% with 
albuminuria of  >30 mg/g, 5.4% with CKD, 7% with CVD, and 2.8% 
with a combination of CKD and CVD. Mortality rate (r) in this 
population is 0.0174 over two years of follow-up. 

We used one linear and two exponential models as described 
above. Linear model is based upon P(R) = R∙0.028179. The 
exponential expression based on logistic regression model is as 

follows: ( )
( )( ) 1

1

1 a R
R

e
−+

=
+

, where  4.65121
1

ra ln
r

R= − = −
−

 . Finally, the 

exponential expression based on Cox model is ( ) ( )1
R

Tq eP R e− ⋅
= − , where 

( )ln 1
0.009466RT

r
q

e

−
= − =

.

Numeric simulation

We ran numeric simulation exercise using these formulae to calculate 
probability of 2 year mortality according to the risk indicator R. The 
results of this simulation are presented in Figure 1 (Panels A, B, and C). 
As demonstrated in Figure 1 Panel A, all three expressions generate very 
similar predictions in the lower 7 categories (R from 0 to 7).

In the groups with the higher value of R linear expression tends to 
predict lower probability than exponential expressions, while logistic 
regression and Cox regressions are very close to each other (Figure 
1, Panel A). In a population with higher mortality (r = 0.075 in this 
example) but same Ȓ exponential curves become flat and close to linear 
predictions (Figure 1, Panel B). The opposite trend is observed in a 
population with lower mortality rate (r = 0.005 in this example), where 
exponential curves are almost indistinguishable from each other, 
but separate farther from the linear predictions (Figure 1, Panel C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 1:  Results of simulation exercise for prediction of probability of outcome based on risk indicator values.  Note that scaled risk indicator values are indicated 
on the figure, but unscaled values were used for calculation.  Panel A, B, and C represent predictions based on different values of the mortality rate in the 
population.  Panel A demonstrates the pattern associated with mortality rate of 0.0174, close to general US population.  Panel B and Panel C demonstrate patterns 
associated with high (0.075) and low (0.005) mortality rates.
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However, if r and Ȓ change in the same direction proportionally the 
pattern of predictions does not change. 

Validation using NHANES dataset

After applying inclusion and exclusion criteria, the final target 
population of the study consisted of 12,515 subjects with mean age 
of 48.9 ± 18.1 years, 48% males, 50.2% non-Hispanic White, 18.9% 
non-Hispanic Black, and 23.4% Mexican American. Of these, 9.5% 
had diabetes mellitus, 11.7% had albuminuria of  >30 mg/g, 6.8% had 
CVD, 5.4% had CKD, and 2.8% had a combination of CKD and a CVD. 
Patients were followed for an average of 57 ± 20 months. Of the target 
population, 1.7% died within the two years of follow-up. Other baseline 
characteristics of the target population are presented in Table 1. 

After the risk indicator (R) was generated for each patient, we 
divided the patients into the four risk categories as described above. 
First, the model based on the above variables was used to predict 
the risk indicator R for two years mortality in the target dataset. The 
predictions were then compared to actual outcome and yielded the area 
under ROC curve of 0.74. 

We stratified the patients into 4 categories based on the value of R: 
Low Risk (0-1.0), Low Intermediate Risk (>1.0-3.0), High Intermediate 
Risk (>3.0-6.0), and High Risk (>6.0). These categories consisted of 65%, 
20%, 12% and 3% of the total population. The actual 2-year mortality 
rates in these categories are presented in Table 2. The predicted 
mortality rates using three prediction models are presented in Figure 
2. Two exponential models generated very similar prediction results. 
Linear model was very similar to exponential models in the lower risk 
categories, but predicted lower probabilities in the risk categories with 
R>6. All three models were reasonably close to observe mortality rates 
in the groups (Figure 2).

Discussion 
This report describes a method to derive prediction expressions 

from the results of multivariate analysis and its validation. Before 
the model can be used in practice thorough validation procedure is 
usually done (i.e., discrimination, calibration, and reclassification) 
in the population that was used for original study (internal validity) 
as well as in the separate group of subjects (external validity) [12,13]. 
Furthermore, clinical usefulness of the model can be evaluated in the 
implementation study after the model has been proven to be valid 
[14,15]. Internal validity of the models in terms of discrimination, 
calibration and reclassification as well as goodness of fit evaluation, 
which would normally be performed for prediction model, would 
require original raw data, and therefor is not available using this 
technique. However, we tested the technique using external validation 
approach. Similar approach has been successfully used in the past [16]. If 
the concept presented here is valid the prediction models may be generated 
and successfully used in the decision support systems in clinical practice. 
In that scenario these tools will be able to determine the individual risk of 
a particular event. The vision of the authors is that these tools will become 
an integral part of electronic medical records. The risk for individual 
subject will be determined as follows. After evaluating the applicability of 
the study to a particular individual using inclusion and exclusion criteria, 
the information pertinent to the model will be obtained (values of the 
predictors for a particular patient), and then the probability of the outcome 
and risk indicator will be determined. 

Few practical points relevant to using this method should be 
emphasized. One of the issues is handling missing data. In case of 
calculating the probability of the outcome for a particular subject, 

the values for the missing data could be imputed with the population 
means. Alternatively, for predictor that is missing the value for a 
particular subject theoretically can be removed from the formula. Other 
important issue has to do with using R in calculation of probability of 
outcome. As indicated above the original calculated R is scaled to make 
it easier to interpret. It should be noted that either original R or Rscaled 
can be used for the expression assuming linear relationship between R 
and P (“simplified expression” above) as both R and Ȓ in the formula 
are scaled in the same linear way. However, for exponential expression 
the original R (as opposed to Rscaled) should be used. 

As almost always the case in using prediction models in practice, 
there might be a substantial difference between the study population, 
where the model has been developed and the target population, 
where it is applied. The assumption that the model can be successfully 
extrapolated to a different population might not always be true as 
we demonstrated in the past [4,17]. To make some adjustment for 
these potential differences we propose to use the outcome rate (r) 
and baseline statistics of the target population in the calculation of 
the predicted probability of outcome as described above. That helps 
to avoid problems with over-fitting, aging data, and other challenges 
based of the difference between study and target population. 

It should be noted that the Woodpecker™ approach has some 
important limitations. First, while we rely on the reports by other 
authors, the quality of the data and statistical analysis is always in 
question. However, provided our target reports are published in a 
quality peer-reviewed journals one can make an assumption that the 
results are sound. Another potential issue is that assumptions regarding 
the data might be violated. Indeed, different steps of Woodpecker™ 
technique are based on particular assumptions that cannot really be 
tested in this context. Specifically, in this approach we assume that 
the variables lack collinearity and have no interaction, which might 

Risk category n Number of deaths Mortality rate
Low (R = 0-1) 8143 24 0.29%
Low Intermediate (R>1-3) 2541 63 2.48%
High Intermediate (R>3-6) 1443 74 5.13%
High (R>6) 388 52 13.40%
Total 12515 213 1.70%

Table 2:  Description of the 4 patient groups divided by risk indicator.

 

Figure 2: Comparison between three prediction models: linear (straight 
line), logistic regression (broken line) and Cox model (dotted line).  Actual 
mortality rates in NHANES validation dataset are indicated by the blocks with 
the number on the top indicating percent mortality in each of the four groups.
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not necessarily be true, or simply might not be tested by the authors 
of the original report. For some steps of this exercise we also assume 
normality in the data, which might also be violated. 

One of the serious methodological challenges of this method is 
the difference between explanatory modeling (etiological modeling) 
and prediction modeling. While statistical tools might be the same, 
the study design aimed at causal explanation and theory building 
might be different from that aimed at prediction. This distinction in 
the goal of analysis may have impact on different steps of modelling 
process. Shmueli [18] elaborately described this difference on every 
step of statistical modeling process, i.e., goal definition, study design, 
data collection, data preparation and analysis, choice of variables and 
methods, model selection and validation, and reporting results. For 
example, in explanatory modeling the choice of independent variables 
would be driven by the selection of the primary variable of interest 
and confounding factors, while in prediction modeling every potential 
predictor might be included in the model. This conceptual difficulty 
might be minimized or avoided by careful selection of the studies to be 
used for prediction modeling. Specifically, hypothesis-driven studies 
that claim causality (rather than association) be less suitable. On the 
other hand, data-driven exploratory analyses even though not design 
for prediction might be more useful to be converted into prediction 
model. Therefore for our purpose of developing prediction algorithm 
the most adequate report is based on the study where multiple variables 
are included in the model and are reported in the paper. The selection 
of the variables in this “optimal” model is based on trying to choose the 
best predictors of the outcome [19,20]. 

Conclusion
In conclusion, we demonstrated simple technique (named 

Woodpecker™) that might allow deriving functional prediction model 
and risk stratification tool from the report of clinical outcome study 
using multivariate regression model. 
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