Diagnosis of Cleidocranial Dysplasia: Two Sisters Case Report

Carlos Nicoleta, Maria José Giménez, Maria Cristina Henríquez, Andrea Werner and Alfredo Esguée
Universidad Andrés Bello, Viña del Mar, Chile

Received date: March 17, 2014, Accepted date: May 8, 2014, Published date: May 15, 2014

Abstract

Two sisters, ages 8 and 12 years old, were referred to our Orthodontics Department because of delayed eruption and retention of primary dentition. They presented specific physical and oral findings in common, which strongly suggest the idea of an undiagnosed syndrome. Cleidocranial dysplasia (CCD) is a dominant inherited condition with high penetrance and wide variation in clinical expressivity [1,2]. Some CCD characteristics include maxillary hypoplasia and some dental abnormalities such as retention of primary dentition, multiple supernumerary teeth and delayed or failing eruption of permanent teeth. Dental alterations in CCD frequently result in malocclusion with long and complex dental treatment. Early diagnosis of the condition is essential, for approaching to a multidisciplinary treatment. Multiple supernumerary teeth have to be an alert, where family group medical history is essential for inferred condition evaluation. The goal of an accurate diagnosis in patients with multiple syndromic characteristics is the main subject of this paper.

Keywords: Cleidocranial dysplasia; Maxillary hypoplasia; Malocclusion

Introduction

Cleidocranial dysplasia (CCD) is a dominant inherited condition with high penetrance and wide variation in clinical expressivity [1,2]. Some CCD characteristics include short stature, narrow chest and sloping shoulders, clavicular aplasia or deficient formation of the clavicles, delayed closure of cranial fontanels and sutures, brachycephalic appearance, wormian bones. The skull can have parietal and frontal bossing, maxillary hypoplasia and some dental abnormalities such as retention of primary dentition, multiple supernumerary teeth and delayed or failing eruption of permanent teeth. Dental alterations in CCD frequently result in malocclusion with long and complex dental treatment [1-11].

The prevalence is one per million [4,8], with complete penetrance and variable expressivity. The cause of CCD is usually caused by a mutation of the Core Binding Factor-α1 gene (RUNX2, runt-related transcription factor 2), located at chromosome 6p21, which is essential for osteoblast differentiation, maturation of chondrocytes as well as for bone an tooth formation [1-6,12]. However 30 to 40% of the cases appear spontaneously, without any apparent genetic cause. The pathology leads to an early developmental disorder of mesenchyme or connective tissue, with retarded ossification, or in some cases, failure of ossification, in some areas of the skeletal structure [1,5].

Histologic studies have shown abnormal alveolar bone and cementum associated with CCD. Both acellular and cellular cementum are present in deciduous teeth, whereas in permanent teeth, cellular cementum is virtually lacking and acellular cementum partially hyperplastic. The alveolar bone shows abnormal remodeling patterns, with abundant odontogenic epithelium. The aetiology of this failure of eruption is considered to be an abnormality in alveolar bone remodeling as well as fibrosis of the gingival [13-16].

CCD is usually under diagnosed because of the relative lack of medical complications in comparison to other syndromes [4]. Early diagnosis of the condition is essential, for approaching to a multidisciplinary treatment, with cooperation between geneticist, endocrinologist, maxillofacial surgeons and orthodontist. The goal of an accurate diagnosis in patients with multiple syndromic characteristics is the main subject of this paper.

Case Report

Diagnosis and etiology

Two sisters were referred to our Orthodontics Department because of delayed eruption and retention of primary dentition. The older sister was 12-year-old and the younger 8-year-old.

Older sister

The 12 years old girl (Figure 1) was referred to our orthodontic department regarding of prolonged retention of deciduous teeth. Her medical history revealed short stature and a family dental history of supernumeraries.

General physical and extraoral examination of the patient showed shorth stature, frontal bossing, depressed and wide nasal bridge, wide nasal base and mid-facial hypoplasia. Intraoral examination showed class III malocclusion, posterior cross bite and retained deciduous teeth (Figure 2). Radiographic findings were multiple unerupted permanent teeth and two supernumerary teeth in the mandibular anterior region (Figure 3). Lateral cephalograph revealed skeletal class III values (Figure 4). Thorax radiographs showed presence of clavicles.
Younger sister

The 8 years old girl (Figure 5) was referred to our department with the chief complaint of delayed eruption of permanent dentition. She had expressed some secondary sexual characters and, because of her short stature, she was under medical treatment in order to prevent early puberty.

The patient was short statured, narrow chest and sloping shoulders, brachycephalic, with frontal bossing, mid-face hypoplasia, moderate telecanthus and wide nasal bridge and base. Oral findings include mixed dentition, Class III malocclusion with anterior and posterior cross bite and delayed eruption of permanent teeth (two years late in comparison to national standards) (Figure 6). Radiographic findings (Figures 7 and 8) were five supernumerary teeth, three on the upper jaw and two in the mandible. Lateral cephalograph revealed skeletal class III values. Thorax radiographs showed presence of clavicles, but a cone shaped thorax with narrow upper thoracic diameter (Figure 9).
Discussion and Differential Diagnosis

In these two particular cases, we found specific physical and oral findings in common, what suggest the idea of a familial disease or a syndrome. Furthermore, the physical aspects were similar in the rest of the family group (Figure 10).

Short stature, narrow chest and sloping shoulders, frontal bossing, brachycephalic appearance, wide nasal bridge and base and mid-facial hypoplasia, and dental abnormalities (retention of primary dentition, multiple supernumerary teeth and delayed eruption of permanents dentition) strongly suggest CCD (Table 1). Thorax radiographs showed presence of clavicles, but a cone shaped thorax with narrow upper thoracic diameter, especially in the younger sister.

<table>
<thead>
<tr>
<th>CLINICAL/RADIOGRAPHIC FEATURE</th>
<th>OLDEST SISTER</th>
<th>YOUNGEST SISTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHORT STATURE</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>NARROW CHEST</td>
<td>-</td>
<td>x</td>
</tr>
</tbody>
</table>
Because of the severity of the associated cancers, thorax radiographs and endoscopy were performed in the sisters. We found no evidence of signs associated with the characteristics of Gardner’s syndrome in the patients.

In these cases CCD appears to be the best diagnose, even though we didn’t observe hypoplasia or absence of the clavicles, probably due to the variable expressivity of the condition. Further genetic test can be conducted in order of diagnose confirmation.

The timing of diagnosis is not only important for choosing appropriate treatment objectives, but also improves the prognosis [23]. In these cases bone and cement condition are factors to consider in the treatment planning and mechanics.

A team approach to management of dental abnormalities on a long-term basis is necessary. The overall goal is to provide an esthetic facial appearance and functional occlusion by late adolescence or early adulthood. In these particular cases the treatment objectives are:

Older patient: (1) Correct the posterior crossbite with rapid maxillary expansion; (2) Surgically remove supernumerary teeth; (3) Fenestration and traction the retained incisor; (4) Remove deciduous teeth; (5) Surgically expose and traction the permanent maxillary canines and guide them into occlusion; (4) Align; (5) Assess space needs and the Class III skeletal growth pattern; (7) Retain.

Younger patient: (1) Correct the posterior crossbite with rapid maxillary expansion; (2) Maxillary protraction with extraoral forces (3) Surgically remove supernumerary teeth; (4) Fenestration and traction of teeth, if needed (5) Align; (6) Assess space needs and the Class III skeletal growth pattern; (7) Retain.

The orthopedic phase of the treatment should be performed as soon as possible, taking into account the age of the older patient and the risk of premature puberty of the younger patient. Surgical removal of supernumerary teeth, fenestration and traction of permanent teeth, if necessary, must consider the state of root development of permanent dentition.

Summary and Conclusions

CCD is usually under diagnosed because of the relative lack of medical complications in comparison to other syndromes. Diagnosing the condition can be difficult in cases where there are no evident morphological signs

Whenever clinical findings are not conclusive, differential diagnosis must be conducted.

In most CCD cases, the orthodontist easily perceives an alteration in the rhythm of deciduous teeth replacement.

Multiple supernumerary cases have to be an alert to the orthodontist. Family group medical history is essential for inherited condition evaluation.

Early diagnosis of the condition is essential for better approaching to a multidisciplinary treatment, with cooperation between geneticist, endocrinologist, maxillofacial surgeons and orthodontist.

References

