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Abstract Hematopoiesis is a complex dynamic process
by which all the blood cells of the peripheral blood are
formed. Different molecular techniques identified different
molecules involved in a coordinated and time-dependent
fashion for the development of different blood cells of
specific lineages. These are identified with the cells
in isolation that may obscure the dynamical nature of
hematopoiesis. This has an importance in understanding
of different hematological diseases. However, there
is no generalized model available in the literature by
which clinicians and patients can be benefited. We have
developed a systems model based on difference delay
equation. Our model shows that minor variation as well
as incorporation of a minor stochastic component to that
model equation at the morphological stage(s) may exhibit
different pathophysiological state of hematopoietic system.
Therefore, this mathematical model reinforces the necessity
of expert domain knowledge in translating the parametric
values so that individual patient could be benefited.

Keywords hematopoiesis; difference delay equation;
leukemia

1 Introduction

Hematopoiesis is a complex process of blood cells
development from hematopoietic stem cell. Hematopoietic
stem cells undergo through the stages of differentiation
processes to form progenitor cells of different lineages.
These progenitor cells undergo further maturation stages to
form mature cells, namely erythrocytes (RBCs), leukocytes
(WBCs) and thrombocytes (THBs) (platelets) of the
hematopoietic system. Different biomolecules, namely
cytokines, cell signaling molecules and transcription factors,
synergistically act to control the differentiation processes
of this cellular development [18]. Any alteration of these
molecules may lead to the development of hematological

diseases (HDs). Phenotypes of differentiated lineages
reflect the sets of genes expressed therein as well as the
receiving signals by the cytokines, therefore the black box
modeling could have an implication in the understanding of
hematopoietic dynamics [10]. Under normal condition, the
cytokine erythropoietin (EPO) regulates the erythrocyte pro-
duction by increasing the production of primitive erythroid
precursors and finally an increase occurs in the number of
circulating erythrocytes that take place some days later [1,
21]. In the production of white blood cells, granulocyte
colony stimulating factor (G-CSF) has been demonstrated
to be very important [19]. Thrombopoietin (TPO) regulates
platelet production by controlling the production and
maturation of megakaryocytes. These are platelet precursor
cells that give rise to 1000–5000 platelets each [11,20,22].

Previously, several mathematical models of hematopoie-
sis have been proposed. Different authors substantially
identified different controlling variables whose alteration
leads to the manifestation of HD. It has been shown that
oscillations and delay in the stem cell compartment are
important and drive several periodic HD [9,14,17] such as
cyclical neutropenia (CN), periodic chronic myelogenous
leukemia (PCML), cyclical thrombocytopenia, and periodic
hemolytic anemia. CN and PCML are of special interest
as oscillations in all three cell lines occurring within
the same oscillation period [6]. Using G0 stem cell
model, it was possible to explore the oscillations at
the neutrophil level but not at the platelet level. Using
integrated mathematical model, it was possible to duplicate
various features of CN. These have been addressed in
the unified model of PCML and could be fitted well with
the insertion of maturation delay time rather than only
in the proliferation phase of a single discrete cell line [4,
5]. Based on the simulations, authors substantially argued
that the critical model parameters include the amplification
rate in the leukocyte line, the differentiation rate from the
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stem cell compartment into the leukocytic lineage and
the rate of apoptosis in the stem cell compartment. By
using differential delay equation, it has been shown that
oscillation in CN is due to the slow periodic oscillations in
the stem cell level [3]. With a decoupled model of stem cell,
addition of stochastic perturbation with noise term(s) at the
differentiation/multiplication or apoptosis rate of stem cell
level, it was also possible to introduce fluctuations in the
cell number [13].

A four-compartment mathematical model has been
developed by Michor et al. to understand the treatment
dynamics of chronic myeloid leukemia [16]. RQ-PCR-
based data (of BCR-ABL) points have been fitted to the
mathematical model for the evaluation of developing
imatinib resistance mutation. In this approach, quantitative
evaluations as well as numerical estimates of the turn-over
rates of leukemic progenitors and differentiated cells are
possible. Authors also concluded that the treatment failure
is due to harboring of resistance mutations increase with
disease progression as a consequence of increased stem
cell burden, and multiple drug therapy is suggested to be
especially important for the patients who were diagnosed
with advanced and rapidly growing disease.

However, the models developed earlier are based on data
that are difficult to get and its translation into a clinical sce-
nario is practically impossible. In recent times, different bio-
logical parametric estimation procedures including the RQ-
PCR have been criticized by a section of the scientific com-
munity [2]. Firstly, the limitation is at the instrument level,
as the majority of the instruments have the reliability of data
within 15% of coefficient of variation (CV) [7]. Secondly,
there is a large variation of a particular parameter even at the
smaller population level and a very small perturbation at the
initial factor may produce a large drift during a given time
course [8]. Therefore, for prediction of a disease dynamics,
it may not be possible to apply the population level data
to the individual cases. Hence, for clinical applications or
handling of different clinical problems of hematology, an
easy-to-handle analytical model is required, so that clini-
cians can easily fit the clinical data that are particularly cap-
tured in a cost-effective manner to that analytical model for
getting a prediction regarding the individual clinical cases.
The present work tries to develop an analytical model in
that direction. To achieve this, we have used the existing
knowledge of hematopoietic dynamics at the morphological
level together with the different functional characteristics of
the hematopoietic cells.

2 Methods

2.1 Hematopoiesis model formulation

Like others we have also assumed the three lineages
model of hematopoiesis. The model has been schematically

Figure 1: Schematic model for hematopoiesis.

presented in Figure 1. In the model, it is assumed that
stem cell(s) is/are differentiated into the precursor cells of
three lineages, namely erythroid (p1), leukocytoid (p2) and
megakaryocytoid (p3) lines. Precursor cells of each lineage
are then differentiated into the corresponding mature cells—
RBC (b1), WBC (b2) and thrombocyte (THB) or platelet
(b3). For simplification of the model, all sorts of precursor
cells of each of the lineages are being considered as only
progenitor/precursor cells. Thus, this sort of model is a
unidirectional model as described by others [4,5,16] and
stem cells are being coupled with the cells of the peripheral
blood. However, in contrast to the previous models, all
parametric variables for simulation purposes are taken as
the absolute cell numbers per cubic millimeter, the unit used
in the conventional Neubauer hemocytometre chamber or by
the cell counter. For leukocytic lineage we have considered
the whole lineage instead of only neutrophil lineage [5,16].
The considered parameters of the model have been shown
in Table 1.

2.2 System equation

The dynamical equation of the model is based on the dif-
ference delay equation. The system equation of cells of any
maturation stage can be represented through the following
generalized equation:

N(k) =N(k−1)+ r×N(k−1)−a×N(k−1)

+c1×dr1×M(k−τ)−c2×dr2×N(k−1)
(1)
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Description of variables & symbols (in parentheses) Value used for normalization Reference

Stem cell
Stem cell count (s) 14 cells/cu.mm. [16]
Multiplication rate of the stem cell (sr) 1.065 cells/day (†dt = 11 days) [16]
Apoptotic rate of stem cells (sa) 1.032 cells/day Calibrated
Differentiation rate of stem cell (sdr) ‡Cf2{Cf1 - (sr + sa)} cells/day
Delay time of differentiation (τ1) 14 days [16]

Progenitor 1 (erythroid lineage)
Progenitor 1 cell count (p1) 4 × 102 cells/cu.mm. [3,4,5,6,9]
Multiplication rate of the progenitor 1 cell (p1r) 1.013 cells/day (†dt = 54 days) [3,4,5,6,9]
Apoptotic rate of progenitor 1 cell (p1a) 1.01339 cells/day Calibrated
Differentiation rate of progenitor 1 cell (p1dr) ‡Cf1 - (p1r + p1a) cells/day
Delay time of differentiation of progenitor 1 cell (τ2) 2 days [3,4,5,6,9]

Progenitor 2 (leukocytoid lineage)
Progenitor 2 cell count (p2) 1 × 102 cells/cu.mm. [3,4,5,6,9]
Multiplication rate of the progenitor 2 cell (p2r) 1.0345 cells/day (†dt = 20.5 days) [3,4,5,6,9]
Apoptotic rate of progenitor 2 cell (p2a) 1.0359 cells/day Calibrated
Differentiation rate of progenitor 2 cell (p2dr) ‡Cf1 - (p2r + p2a) cells/day
Delay time of differentiation of progenitor 2 cell (τ3) 7 days [3,4,5,6,9]

Progenitor 3 (megakaryocytoid lineage)
Progenitor 3 cell count (p3) 1×102 cells/cu.mm. [3,4,5,6,9]
Multiplication rate of the progenitor 3 cell (p3r) 1.075 cells/day (†dt = 9.6 days) [3,4,5,6,9]
Apoptotic rate of progenitor 3 cell (p3a) 1.0802 cells/day Calibrated
Differentiation rate of progenitor 3 cell (p3dr) ‡Cf1 - (p3r + p3a) cells/day
Delay time of differentiation of progenitor 3 cell (τ4) 3 days [3,4,5,6,9]

Erythrocytes
RBC count (b1) 5×106 cells/cu.mm. [12]
Apoptotic rate of RBCs (b1a) 0.00007747 cells/day Calibrated

Leukocytes
WBC count (b2) 1 × 104 cells/cu.mm. [12]
Apoptotic rate of WBCs (b2a) 0.012999996 cells/day Calibrated

Platelets
Platelet count (b3) 5 × 105 cells/cu.mm. [11,12]
Apoptotic rate of platelets (b3a) 0.00017 cells/day Calibrated

†In the parentheses dt stands for doubling time of cell.
‡Cf1 (= 3) and Cf2 (= 0.0365) are two calibration factors.

Table 1: Parameters and value used for initialization in the model.

or

N(k) =
[
1+ r−a− (

c2×dr2
)]×N(k−1)

+ c1×dr1×M(k− τ)
(2)

or

N(k) = f ×N(k−1)+ c1×dr1×M(k− τ), (3)

where N(k) is the number of concerned cell type at time
instant k and M(k− τ) is the number of precursor cell type
which was differentiated τ time ago. Hence, τ is the delay
time required for cell maturation by the action of differ-
ent cytokines, cellular signaling molecules and transcription
factors. Each cells type grows exponentially with its own
multiplication rate (r), and decays with its own apoptosis
rate (a). Thus, for stem cell these variables are denoted with
sr and sa. Similarly, for p1 lineage cells, these variables

are represented by p1r and p1a. This notational scheme is
followed for other cell types as represented in Table 1. It
is assumed that multiplication rate of each cell type at the
matured cells compartment is zero.

When the effect of differentiation is absent, that is, when
k is less than the delay time (τ ) required for the formation of
the cell type of the down-stream lineage, c1 will be equal to
zero. Otherwise c1 will be a positive quantity. In the present
model, during the stage of differentiation from stem cell to
progenitor cell stage, value of c1 will be equal to one divided
by three (as stem cell is distributed to three lineages after dif-
ferentiation). However, in the system equation for the cells
of the subsequent compartment, c1 is equal to one (as each
progenitor cell type is differentiated into a single lineage
only). For the cells which are differentiable such as stem cell
(s), erythroid (p1), leukocytoid (p2) and megakaryocytoid
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(p3), they will have c2 equal to one in their system equation.
For the system equation of RBC, WBC and platelet, c2 will
be equal to zero as they do not differentiate.

Again dr1 is the differentiation rate of the previous com-
partment cell and dr2 is the differentiation rate of the con-
cerned cell type. For example, the differentiation of stem
cell to the progenitor cells has only dr2 (as dr1 is zero) and
is represented by sdr. Similarly, for p1 lineage cell type,
dr1 = sdr and dr2 = p1dr. Likewise, for p2 lineage cell
type, dr1 = sdr and dr2 = p2dr and for p3 lineage, dr1 =
sdr and dr2 = p3dr.

Now, if k < τ (delay time required for the formation of
a progenitor cell from its previous compartment cell of the
same lineage) the system equation of concerned daughter
cell types can be represented through the following general-
ized equation:

N(k) = f ×N(k−1), (4)

and if k ≥ τ

N(k) = f ×N(k−1)+ c1×dr1×M(k− τ). (5)

Considering all the cell types and their corresponding
functional factors, the above-mentioned generalized equa-
tion may be used to develop a system model. Again, the
value of f is different for different cell types:

for s type cell: f = f1 = (1+sr−sa−sdr),
for p1 type cell: f = f2 = (1+p1r−p1a−p1dr),
for p2 type cell: f = f3 = (1+p2r−p2a−p2dr),
for p3 type cell: f = f4 = (1+p3r−p3a−p3dr),
for b1 type cell: f = f5 = (1− b1a),
for b2 type cell: f = f6 = (1− b2a),
for b3 type cell: f = f7 = (1− b3a).

In our system model, four delay times τ1, τ2, τ3, τ4 have
been considered. Where τ1 is the required delay time for the
formation of p1, p2 and p3. τ2 is the required delay time for
the formation of RBC from p1. τ3 is the required delay time
required for the formation of WBC from p2 and τ4 is the
required delay time for the formation of platelets from p3.
Let us assume τ1 <τ2 <τ3 <τ4 (note that in the model there
is no such hierarchy and the model is flexible in nature).

At discrete time interval (k), the overall system equation
can be written as when k < τ1,
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k)
p1(k)
p2(k)
p3(k)
b1(k)
b2(k)
b3(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 0 0 0 0 0 0
0 f2 0 0 0 0 0
0 0 f3 0 0 0 0
0 0 0 f4 0 0 0
0 0 0 0 f5 0 0
0 0 0 0 0 f6 0
0 0 0 0 0 0 f7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k−1)
p1(k−1)
p2(k−1)
p3(k−1)
b1(k−1)
b2(k−1)
b3(k−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

or x(k) = Ax(k − 1), where x(k) = [s(k),p1(k),p2(k),
p3(k), b1(k), b2(k), b3(k)]T , A = Diag[(fi) 1 ≤ i ≤ 7]
matrix given in (6).

For k ≥ τ1, the equation (6) is changed as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k)

p1(k)

p2(k)

p3(k)

b1(k)

b2(k)

b3(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 0 0 0 0 0 0

0 f2 0 0 0 0 0

0 0 f3 0 0 0 0

0 0 0 f4 0 0 0

0 0 0 0 f5 0 0

0 0 0 0 0 f6 0

0 0 0 0 0 0 f7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k−1)

p1(k−1)

p2(k−1)

p3(k−1)

b1(k−1)

b2(k−1)

b3(k−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ1

)

p1
(
k− τ1

)

p2
(
k− τ1

)

p3
(
k− τ1

)

b1
(
k− τ1

)

b2
(
k− τ1

)

b3
(
k− τ1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(7)

or x(k) =Ax(k−1)+A1x(k− τ1).
For k ≥ τ2, the equation (7) is changed as follows:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k)

p1(k)

p2(k)

p3(k)

b1(k)

b2(k)

b3(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 0 0 0 0 0 0

0 f2 0 0 0 0 0

0 0 f3 0 0 0 0

0 0 0 f4 0 0 0

0 0 0 0 f5 0 0

0 0 0 0 0 f6 0

0 0 0 0 0 0 f7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k−1)

p1(k−1)

p2(k−1)

p3(k−1)

b1(k−1)

b2(k−1)

b3(k−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ1

)

p1
(
k− τ1

)

p2
(
k− τ1

)

p3
(
k− τ1

)

b1
(
k− τ1

)

b2
(
k− τ1

)

b3
(
k− τ1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 p1dr 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ2

)

p1
(
k− τ2

)

p2
(
k− τ2

)

p3
(
k− τ2

)

b1
(
k− τ2

)

b2
(
k− τ2

)

b3
(
k− τ2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

Or x(k) =Ax(k−1)+A1x(k− τ1)+A2x(k− τ2).
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For k ≥ τ3, the equation (8) is changed as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k)

p1(k)
p2(k)
p3(k)
b1(k)
b2(k)
b3(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 0 0 0 0 0 0
0 f2 0 0 0 0 0
0 0 f3 0 0 0 0
0 0 0 f4 0 0 0
0 0 0 0 f5 0 0
0 0 0 0 0 f6 0
0 0 0 0 0 0 f7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k−1)
p1(k−1)
p2(k−1)
p3(k−1)
b1(k−1)
b2(k−1)
b3(k−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ1

)

p1
(
k− τ1

)

p2
(
k− τ1

)

p3
(
k− τ1

)

b1
(
k− τ1

)

b2
(
k− τ1

)

b3
(
k− τ1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 p1dr 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ2

)

p1
(
k− τ2

)

p2
(
k− τ2

)

p3
(
k− τ2

)

b1
(
k− τ2

)

b2
(
k− τ2

)

b3
(
k− τ2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 p2dr 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ3

)

p1
(
k− τ3

)

p2
(
k− τ3

)

p3
(
k− τ3

)

b1
(
k− τ3

)

b2
(
k− τ3

)

b3
(
k− τ3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

or x(k) = Ax(k − 1) + A1x(k− τ1) + A2x(k− τ2) +
A3x(k− τ3).

For k ≥ τ4, the equation (9) is changed as follows:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k)
p1(k)
p2(k)
p3(k)
b1(k)
b2(k)
b3(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1 0 0 0 0 0 0
0 f2 0 0 0 0 0
0 0 f3 0 0 0 0
0 0 0 f4 0 0 0
0 0 0 0 f5 0 0
0 0 0 0 0 f6 0
0 0 0 0 0 0 f7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s(k−1)
p1(k−1)
p2(k−1)
p3(k−1)
b1(k−1)
b2(k−1)
b3(k−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

sdr

3
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ1

)

p1
(
k− τ1

)

p2
(
k− τ1

)

p3
(
k− τ1

)

b1
(
k− τ1

)

b2
(
k− τ1

)

b3
(
k− τ1

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 p1dr 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ2

)

p1
(
k− τ2

)

p2
(
k− τ2

)

p3
(
k− τ2

)

b1
(
k− τ2

)

b2
(
k− τ2

)

b3
(
k− τ2

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 p2dr 0 0 0 0
0 0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ3

)

p1
(
k− τ3

)

p2
(
k− τ3

)

p3
(
k− τ3

)

b1
(
k− τ3

)

b2
(
k− τ3

)

b3
(
k− τ3

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 p3dr 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

s
(
k− τ4

)

p1
(
k− τ4

)

p2
(
k− τ4

)

p3
(
k− τ4

)

b1
(
k− τ4

)

b2
(
k− τ4

)

b3
(
k− τ4

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)

or

x(k) =Ax(k−1)+A1x
(
k− τ1

)
+A2x

(
k− τ2

)

+A3x
(
k− τ3

)
+A4x

(
k− τ4

)

or

x(k) =Ax(k−1)+
4∑

j=1

Ajx
(
k− τj

)
, (11)

where A and Aj both are defined by (7×7) matrix.

3 Simulation results

With the previously mentioned systems equations, simula-
tion exercises have been carried out using MATLAB 6.5.
The parametric values as mentioned in Table 1 are utilized
for rationalizing the dynamical states of the hematopoietic
system and to understand the relative importance of those
parametric values in hematopoietic dynamics.

3.1 Settings of variables for the hematopoiesis

The values have been set by considering the hematopoietic
process for a normal individual and are presented in Table 1.
The values of cell numbers are presented in terms of abso-
lute cell number per cubic millimeter and multiplication rate
(doubling time), differentiation rate and apoptosis rate are
all in number of cells per days, while time delay in differen-
tiation is in number of days. For setting of parametric values
we used the references [3,4,5,6,9,11,12,16]. In majority
of the cases total cell count data are available, functional
data in most of the cases are calibrated data. Parametric
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(a)

(b)

Figure 2: Dynamics of immature progenitor cells (a) and
mature cells (b) for a normal individual as simulated with the
parametric values mentioned in Table 1. In the plot “Total”
indicates the total number of s-type, p1-type, p2-type and
p3-type cells (a), and RBCs, WBCs and thrombocytes
(THBs) or platelets (b).

values of the peripheral blood are obtained from references
[11,12], stem cell level data are collected from the work of
Michor et al. 2005 [16]. Different parametric values for the
variables of the progenitor cell level for human (normal) are
not available in literature, however, dog model data in terms
of body weight are available [3,4,5,6,9]. So for fitting into
the model we make a logical transformation of that data in
terms of cu.mm. with some calibrations to fit into the model.

Simulation studies show that with the setting of these
initial parametric values as mentioned in Table 1, the abso-
lute cell number of different progenitor and mature cells

in the peripheral blood are maintained very closely to the
initially set value (Figure 2).

3.2 Identification of the sensitive parameter

It is acknowledged that in different hematological dis-
orders, the parametric value changes. To identify the
sensitive parameter and the impact of that parameter in
the development of hematological disorder in the long run,
simulation study would be helpful. Hence, it is necessary
to identify the influence of each parameter in the dynamics
of the hematopoiesis. It is also acknowledged that in
several hematological disorders, different combinations of
parameters may be altered. When diseases are identified,
there is a large deviation of the parametric mean in the
diseased person in comparison to the normal. However, it is
not known whether or not the minor variation in the value
of different hematological parameters and their persistence
within the system would influence the hematopoietic
system behavior even though the values are within the
normal population variance. In that case, analytical model
and simulation study may also help.

To test the systems sensitivity and influence of
the parametric values on the manifestation of different
hematological disorders, rigorous simulation exercises have
been carried out. The values of the variables have been
changed within 10–100% of the setting values. Simulation
results suggest that the change in parametric values of
peripheral blood compartment has almost no impact on
the dynamics of the overall system. On the other hand,
minor variations, even within the 10% of the mean value
of any parameter in the bone marrow (immature cells)
compartment, have a considerable impact on the overall
system dynamics. In this compartment, multiplication rate,
apoptotic rate and differentiation rate have much influence
on the systems dynamics within a shorter time period,
whereas differentiation delay has influence for the longer
time period. For example, if differentiation rate in the
erythroid lineage is reduced to 1/6 (from s to p1) and
1/60 (from p1 to b1) of the initial set value as shown in
Table 1, and keeping other parametric values as mentioned
in Table 1 unchanged, there is much effect on the progenitor
compartment rather than in the peripheral blood (Figure 3).
However, decreasing the number of RBCs in the peripheral
blood requires the increment of apoptosis rate of RBC.
From this simulation, it is anticipated that the increase in
apoptosis rate may be a major factor for the development
of anemia in acute condition. However, the decrease in
differentiation rate may produce a chronic effect in the
development of anemia.

With the increase in the multiplication rate and differ-
entiation rate, the system response becomes unbounded in
nature; while the decrease in the apoptotic rate (keeping the
parametric values of other variables unaltered) simulation
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(a)

(b)

Figure 3: Simulation result with the change in the paramet-
ric values sdr ∼= 0.0055 and p1dr ∼= 0.0162 keeping other
parametric values unchanged as mentioned in Table 1. This
simulation resembles the anemic feature. In (a), cells of the
immature progenitor compartment and in (b) cells of the
mature cells compartment are shown. In the plot “Total”
indicates the total number of s-type, p1-type, p2-type and
p3-type cells (a), and RBCs, WBCs and thrombocytes
(THBs) or platelets (b).

studies show the same behavior. With the reverse condition,
systems may tend to collapse. However, the absolute cell
number of any compartment does not have any influence on
the qualitative behavior in the system dynamics though the
output has an increased number of cells. Change in the para-
metric value at the progenitor compartment has the influence
on that particular lineage. With increase in multiplication
rate of p2r to 1.035 and further decrease in p2dr to the
1/10 of the calculated value according to the relationship

(a)

(b)

(c)

Figure 4: Simulation result with the change in the para-
metric values p2r = 1.035 and p2dr ∼= 0.093 keeping other
parametric values unchanged as mentioned in Table 1. This
simulation resembles the leukemic feature, as there is an
increase in the immature progenitor cells of leukocytic
lineage (a) with the decrease in the mature WBCs (c),
other cells in peripheral blood (b), is almost unchanged. In
the plot “Total” indicates the total number of s-type, p1-
type, p2-type and p3-type cells (a), and RBCs, WBCs and
thrombocytes (THBs) or platelets (b).

mentioned in Table 1 and keeping other parametric values as
mentioned in Table 1 unchanged, hematopoietic dynamics
resembles the behavior with leukemic (Figure 4).
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Parameter Multiplication factor (mf) Mean SD Figure number

sr 0.001 1.065 0.001
Figure 5

sdr 0.001 0.033 3.7404×10−5

sr 0.1 1.0668 0.1025
Figure 6

sdr 0.1 0.0329 0.0037

sr 0.1 1.0607 0.0943
Figure 7

sdr 0.1 0.0331 0.0034

Table 2: Simulation with the random values of sr and sdr. In all cases, the initial value of sr= 1.065 is set, but incorporation
of this randomness produces a change in the mean and SD of sr. With these changes corresponding plots of the simulations
studies are indicated in the last column of the table.

3.3 Stochastic perturbation

Any sort of biological observation is noisy and has been
represented as the mean value with a variance. This is due
to three reasons: first, the non-homogeneous nature of the
biological sample; second, the variation due to the detection
system; third, the experimental error. Conventional clinical
testing consisting of collected data at a discrete sequence
of time may show a large deviation of the parametric value
from its mean value within two consecutive time points.
Loss of such consecutive data may influence the systems
output in the long run, if a dynamical model is set with the
population mean value. Incorporation of minor stochastic
component within standard deviation of the mean value of
the parametric variable(s) gives the simulation study a more
realistic flavor.

Moreover, the change in the parametric value of the
peripheral blood compartment has no qualitative influence
on the system dynamics. Hence, it is important to study
the effect of stochastic perturbation with the parameters
of the cells present in the bone marrow compartment. The
following simulation study reveals the parametric influence
at the stem cell level. Stochastic component is introduced in
the developed model as an additive term to the sr; hence,
the parametric value of sr will be changed to srm. Hence,

srm= sr+mf× rand,

where rand is a function for generating random numbers.
This has been done through MATLAB. mf is a multiplica-
tion factor. With the addition of this stochastic component
around the mean value of multiplication rate (sr= 1.065) at
every time interval (Table 2) while keeping other parametric
values as mentioned in Table 1 unchanged, a change in the
system dynamics is noted. Simulation result shows that with
the increase in the standard deviation around the mean value
of the multiplication rate (sr), there is a more deviation in
the system output from the normalized condition within a
given interval of time (Figures 5 and 6). This is noted partic-
ularly in the bone marrow compartment. Interestingly, with
the same sr and mf values (the value used for the simu-
lation of Figure 5), but due to the presence of stochastic

(a)

(b)

Figure 5: Profile of the dynamics of immature progenitor
cells (a) and mature cells (b) with a random value and
an initial set value of sr = 1.065 and mf = 0.001 while
other parametric values, as mentioned in Table 1, were kept
unchanged. But due to the addition of stochasticity, the mean
value of sr is changed to 1.065. In the plot “Total” indicates
the total number of s-type, p1-type, p2-type and p3-type
cells (a), and RBCs, WBCs and thrombocytes (THBs) or
platelets (b).
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(a)

(b)

Figure 6: Profile of the dynamics of immature progenitor
cells (a) and mature cells (b) with a random value and
an initial set value of sr = 1.065 and mf = 0.1 while
other parametric values, as mentioned in Table 1, were kept
unchanged. But due to the addition of stochasticity, the mean
value of sr is changed to 1.0668. In the plot “Total” indicates
the total number of s-type, p1-type, p2-type and p3-type
cells (a), and RBCs, WBCs and thrombocytes (THBs) or
platelets (b).

component another simulation exhibit another pathophysi-
ological state that is resemble with the pancytopenic charac-
teristics of the hematopoietic dynamics (Figure 7).

4 Discussion

Simulation studies with this analytical model suggest that
the persistence of one of the parametric values with a minor
shift is able to produce pathophysiological shifting in the

(a)

(b)

Figure 7: Profile of the dynamics of immature progenitor
cells (a) and mature cells (b) with a random value and
an initial set value of sr = 1.065 and mf = 0.001 while
other parametric values, as mentioned in Table 1, were kept
unchanged. But due to the addition of stochasticity, the mean
value of sr is changed to 1.0607. In the plot “Total” indicates
the total number of s-type, p1-type, p2-type and p3-type
cells (a).

hematopoietic system. Our simulation study indicates that
the occurrence of different hematological disorders may be
due to the minor shifting of parametric value particularly at
the immature cell stage. In reality, it is not known whether
that value may persist for longer interval of time for the
manifestation of the disease phenotype. Moreover, due
to the large variation of biological data at the individual
level and instrumental limitation, it is difficult to make
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a long-term prediction regarding the individual clinical
cases with the population mean value. Simulation study
with incorporation of stochastic component at the more
immature cell stage also indicates the chances of appearing
of a disease phenotype. Therefore, this study emphasizes
the importance of precise data collection particularly at
the immature cell stage during a clinical investigation
procedure, as an imprecise data collection may increase the
chance of erroneous prediction about the system dynamics.
This sort of uncertainty can be minimized by increasing
the amount of data collection in a given interval of time.
Together with this, there is a need for the development
of instruments having higher sensitivity. However, both
approaches may increase the therapeutic cost. Cost can be
minimized by observing the data for a shorter period of time
and then, fitting it to the mathematical model with a proper
calibration factor to predict the system dynamics.

Experimentally stem cells number, multiplication rate,
apoptosis rate can be measured but, realistically there is no
direct way to measure the differentiation rate of cells partic-
ularly for in vivo. At present moment acquisition of data for
cell count at different lineages can be captured by flow cyto-
metric analysis. For the multiplication rate, apoptotic rate
and differentiation rate and delay time for cellular differ-
entiation, the best way is through in vitro cell/bone marrow
culture-based method with video documentation. Number of
quiescent cells can be calculated by subtracting the sum of
numbers of the apoptotic cells, multiplied cells and differen-
tiated cells from the total number of cells at any time point.
Thus, the number of the quiescent stem cells as described
earlier [13] can be obtained. The advantage of such a dynam-
ical model is that the absolute number of total progenitor
cells could be evaluated at any time point, once the dynamics
is fitted with this analytical model and then, prediction about
the systems dynamics can be made. For implementation pur-
pose, data obtained at the time of diagnosis can be fitted
into this analytical model and thus future predictions can be
made through simulation exercises. In this way, our analyti-
cal model would help the clinical investigators in the assess-
ment regarding the future disease states of the patients.

An analytical model can infer regarding the importance
of the range of parametric bounds in the prediction of sys-
tems dynamics. For many years physiologists and clinical
investigators try to understand the importance of the initial
parametric values in the prediction of systems dynamics but
were unable due to lack of proper analytical tool. Attempt
to finding this experimentally would definitely increase the
cost of investigation. So they are speculative regarding this
manner. It is hypothesized that in the application of Systems
Biology (SB) to the clinical arena, middle-out rationalist
approach (MORA) is more desirable than the conventional
practices of SB. In the practice of MORA view, a set of
difference equations with inequations are better suited

for the quantitative understanding regarding the disease
dynamics. This approach has already been applied for
the development of analytical models of different patho-
physiological states of solid tumors [15]. The present model
is based on difference delay equations. The incorporations
of different delays in the system equation may be another
representation of application of inequations. Due to differ-
ence equation, this analytical model has flexibility to change
its parametric values and to incorporate other variable(s), if
necessary, depending on the need of the individual clinical
cases. This, in turn, helps to visualize/test the effect of
that component(s) on the system dynamics and/or enhance
the understanding of the complexity of a physiological
system further. For example, the effect of interleukin on the
hematopoietic dynamics may be observed by incorporating
it as a subtractive or additive term into the present system
equation. The expected out-come from this analytical model
or further refinement of the model (by finer adjustments of
parametric values or incorporation of calibration factor or
other variables, if needed) can be achieved through the steps
of predict-observe-correct cycle. Previously, this has been
indicated as the implicative procedure for the developed
(analytical) models through MORA view [15].

Therapeutic strategies can also be assessed through this
model. Any drug which may alter these factors can bring
changes in the dynamics in the long run. So the application
of a specific drug (therapy) for a shorter interval of time,
followed by collection of individual patients’ data and fitting
of those data to the model followed by simulation exercises,
can help to judge the efficacy of that particular drug in the
long run. Therefore, through this model, hematologists can
make predictions and assessment regarding the therapeutic
outcome of a therapeutic schedule/strategy during the course
of a treatment procedure.

A change in any molecular factor like cytokine level,
signaling protein or transcription factor, would ultimately
make a shift in the cellular functional characteristics, that is,
multiplication, differentiation or apoptosis rates. This study
also indicates the fact that with the available instrumental
facility it is very difficult to translate a low level (molecular)
data for prediction at the gross morphological characteristics
or functionality of cells. In disease cases, a change in the
subtractive terms or multiplication and/or differentiation
terms may produce control. As a suggested strategy for
the development of analytical model with MORA view,
the presently developed model is based on the patho-
physiological rationality and it considered hematopoiesis
as a dynamical event. Hence, prior domain knowledge has
been required to be the important criteria for understanding
the implication, further development and/or modification
of such analytical model [15]. And we hope that this
analytical model would help the physiologists and clinical
investigators in testing their apprehensions and hypotheses
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regarding the patho-physiological shifting during the course
of hematopoietic dynamics.
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