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In this work, we use lower case letters for the original functions and 
upper case letters stand for the transformed functions.

5.1 Theorem 1. If ( ) ( ) ( )y x f x h x= ±  , then ( ) ( ) ( )Y k F k H k= ± .

5.2 Theorem 2. If ( ) ( )y x cf x=  , then ( ) ( )Y k cF k= , where c  is a 
constant.

5.3 Theorem 3. If ( )( ) ( )ny x f x=  , then
( )!( ) ( )

!
k nY k F k n
k
+

= + .
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5.5 Theorem 5. If ( ) my x x=  , then ( ) ( )Y k k mδ= − , 

where 
1,

( )
0,

k m
k m

k m
δ

=− =  ≠
 .

The above theorems can be deduced from equations (1) and (2).

The Modified Differential Transform Method
In this section, we will introduce a reliable and efficient algorithm 

to calculate the differential transform of a nonlinear function ( ( ))g y x . 
The Adomian polynomials of this nonlinear function are determined 
formally as follows [12,13].
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Introduction
The Differential Transform Method (DTM) has been proved 

to be efficient for handling nonlinear problems, but the nonlinear 
functions used in these studies are restricted to polynomials and 
products with derivatives [1-5]. For other types of nonlinearities, 
the usual way to calculate their transformed functions as introduced 
by [6] is to expand the nonlinear function in an infinite power series 
then take the differential transform of this series. The problem with 
this approach is that the massive computational difficulties will arise 
in determining the differential transform of nonlinear function while 
working with this infinite series. Another approach for obtaining the 
differential transform of nonlinear terms is the algorithm in [7]. It is 
based on using the properties of differential transform and calculus 
to develop a canonical equation. Then this equation is solved for the 
required differential transform of nonlinear term. But, as seen in the 
simple examples in section 3 [7] the algorithm requires a sequence 
of differentiation, algebraic manipulations and computations of 
differential transform for other functions which is more difficult for 
the case of composite nonlinearities.

In this work, we introduce a comprehensive and more efficient 
approach for using the DTM to solve nonlinear initial-value problems; 
the idea is based on the methodology in [8]. The nonlinear function is 
replaced by its Adomian polynomials and then the dependent variable 
components are replaced by their corresponding differential transform 
components of the same index. This technique benefits the properties 
of the Adomian polynomials and the efficient algorithm to generate 
them quickly as in the work [9-11]. Numerical simulations of some 
nonlinear equations with different types of nonlinearity are treated and 
the proposed technique has provided good results.

Differential Transform Method
The transformation of the kth derivative of a function )(xy  is as 

follows

0

1( ) ( )
!

k

k
x x

dY k y x
k dx =

 
=  

  
,    (1)

and the inverse transformation is defined by
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That is, the Adomian polynomials of ( ( ))g y x  are 
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6.1 Lemma: If ( ) ( ( ))f x g y x= , then ( ) kF k A= where kA are the 
Adomian polynomials kA  but with replacing ky by ( ) , 0,1,2,Y k k =  . 

6.2 Proof: The differential transforms of ( )f x  are computed by 
utilizing (1) as
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In general we have, ( ) kF k A= . 

Consequently, the inverse transform of the nonlinear function can 
be written as

( ) ( ( ))f x g y x= = 0
0

( )kk
k

A x x
∞

=

−∑ ,                                                        (3)

where, kA are the differential transform of ( ) ( ( ))f x g y x= . 

The advantage of using this algorithm for computing differential 
transformation of nonlinear functions comparing with the algorithm 
suggested in [7], is this algorithm dealing directly with nonlinear 

function of the problem in hand in its form without any differentiation 
or algebraic manipulations or even there is no need to compute the 
differential transform of other functions to obtain the required one. 
This will be clear throughout the following theorems.

6.3 Theorem 6. If ( ) ( ) ( ( ))f x h x g y x=  , then
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6.4 Proof: By utilizing definition (1), we can get
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In general we have,
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Again utilizing (3), we get 1( ) kAF k
k
−=  , where 1k ≥  and 
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6.8 Proof: Utilizing the definition of the transform, we can get
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6.10 Proof: Utilizing the definition of the transform, we can get
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6.12 Proof: Utilizing the definition of the transform, we can get
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Applications and Numerical Results
In this section, we implement the proposed method on some 

different examples with different types of nonlinearity.

7.1 Example 1. Consider the nonlinear Volterra integro-differential 
equation

3 2
2

0

( ) ( ) ( ) ( ) cos2

1 sin2
( )

x

y x y x y x y x x

tx x dt
y t

′′ ′+ + = +

+
− ∫

, 0 1x≤ ≤                                        (4) 

with the initial conditions

(0) 1y = and (0) 1y′ = .                                                                              (5)

The differential transformation of equation (4) and the initial 
conditions (5) are

0

2 cos( 2) ( 3)
!!( 2)

( 2)!
( 1) ( 1) ( ) ( )

k

k

m

k k
kkY k

k
m Y m Y k m Y k

π δ

=


+ − −


+ = +  + + − −



∑  

2 1
3

2
1

1 2 ( 1)sin
2 2 ( 1)! 2

k m
k

k m
m

A m A
k k m

π− −
−

− −
=

−  − −  − − −   
∑ , 

where [2 cos( 2)] !k k kπ  and [2 sin( 2)] !k k kπ are the differential 
transforms of cos(2 )x  and sin(2 )x , respectively and kA  are 
the differential transform of the nonlinear function 2( )g y y−= ,
and (0) (1) 1Y Y= = . Using the Lemma, kA are: 0 ( (0)) 1A g Y= = , 

1 2 (1)A Y= − , 2
2 2 (2) 3 (1)A Y Y= − + , 3

3 2 (3) 6 (1) (2) 4 (1)A Y Y Y Y= − + − ,

2 2
4 2 (4) 2 (1) (3) (2) 3 (1) (2)A Y Y Y Y Y Y= − − − + 45 (1)Y+ , … 

Utilizing the recurrence relation, the transformed initial conditions 
and kA , ( )Y k are evaluated. Hence using the inverse transformation 

formula, the following series solution up to 10( )O x  can be obtained 
2 3 4 5 6 7

8 9
10

( ) 1
2! 3! 4! 5! 6! 7!

( )
8! 9!

x x x x x xy x x

x x O x

= + − − + + − − +

+ +

. 

For sufficiently large number of terms, the closed form of the 
solution is ( ) sin cosy x x x= + , which is the exact solution. Table 1 
shows the absolute relative error obtained for three various numbers of 
terms and at some test points.

7.2 Example 2. Consider the nonlinear Volterra integro-differential 
equation

2 3 2

3 tan ( )

0

6( 1) ( ) ( 3 6 6) x

x
y t

x y x x x x e

t e dt

−

−

′+ = + + +

+∫
, 0 1x≤ ≤ ,                           (6)

with the initial condition

(0) 0y = .                                                                                                     (7)

The differential transformation of equation (6) and the initial 
condition (7) are

2 3
4

1 1( 1) ( 1)
1 6( 1)

( 1) (6 11 6 )
!

k
k

kY k Y k
k k

Ak k k
k k

−

−
+ = − − +

+ +
 − − + −

+ 
  

,                                                       (8) 

where !k kλ  are the differential transforms of xeλ , kA are the 

differential transforms the nonlinear function tan( ) yg y e−=  and 
(0) 0Y = . 

If we put 0x = into equation (6), we can get (0) 1y′ =  and hence
(1) 1Y = .

The following system for 1, 2, 3, , 8k =  is obtained from (8)

(2) 0Y = ,
1(3) (1)
3

Y Y= − , 

2(4) (2)
4

Y Y= − , 

03 1 6(5) (3)
5 6(5) 4! 4

A
Y Y

 
= − + − + 

 
, 

14 1 24(6) (4)
6 6(6) 5! 5

A
Y Y  

= − + + 
 

, 

25 1 60(7) (5)
7 6(7) 6! 6

A
Y Y  

= − + − + 
 

, 

x Abs. rel. err.,
(5 Terms)

Abs. rel. err.,
(10 Terms)

Abs. rel. err.,
(15 Terms)

0.2 7.75099E-08 0 0

0.4 4.5762E-06 7.74161E-13 0

0.6 5.0297E-05 6.19746E-11 0

0.8 0.000283721 1.4145E-09 1.25621E-15

Table 1: Numerical comparison of results in example 1.
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36 1 120(8) (6)
8 6(8) 7! 7

A
Y Y

 
= − + + 
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47 1 210(9) (7)
9 6(9) 8! 8!

A
Y Y  

= − + − + 
 

, 

where differential transform components kA are: tan( (0))
0 1YA e−= = , 

1 (1)A Y= , 2
2 (1) (2)A Y Y= − , 3

3 (1 2) (1) (1) (2) (3)A Y Y Y Y= − + − , 

2
4

2 4

(1) (3) (1 2) (2)

(3 2) (1) (2) (3 8) (1) (4)

A Y Y Y

Y Y Y Y

= + −

+ −
.

By solving the above systems for ( )Y k , the series solution of 
problem (6) and (7) up to 10( )O x  is given by

3 5 7 9
10( ) ( )

3 5 7 9
x x x xy x x O x= − + − + + .

For sufficiently large of terms, the closed form of the solution is
1( ) tany x x−= , which is the exact solution. Table 2 shows the absolute 

relative error obtained for three various numbers of terms and at some 
test points. 

7.3 Example 3. Let us consider the nonlinear Volterra integro-
differential equation

2
0

( )( ) 2 ( ) ( ) ,
1 ( )

x
y ty x y x y x x dt
y t

′
′′ ′− = − +

+∫ 0 1x≤ ≤ ,                           (9)

with the initial conditions

(0) 0y = , and (0) 1y′ = .                                                                         (10)

The differential transformation of this equation and its initial 
conditions are

0
1

1
0

2 ( 1) ( 1) ( ) ( 1)
!( 2)

( 2)! 1 ( 1) ( 1)

k

m
k

k m
m

m Y m Y k m k
kY k

k
m Y m A

k

δ
=
−

− −
=

 
 + + − − − +
 
 + =

+  
+ + 

  

∑

∑
, 

(0) 0Y = and (1) 1Y = . 

kA can be obtained by using Lemma as: 2 1
0 (1 (0)) 1A Y −= + = , 1 0A = , 

2
2 (1)A Y= − , 3 2 (1) (2)A Y Y= − , 2 4

4 2( (1) (3) (2)) (1)A Y Y Y Y= − + +  , … .

By solving for ( )Y k , the series solution of problem (9) and (10) up 
to 10( )O x  is given by

3 5 7 9 101 2 17 62( ) ( )
3 15 315 2835

y x x x x x x O x= + + + + + .
 

For sufficiently large number of terms, the closed form of the 
solution is ( ) tany x x= , which is the exact solution. Table 3 shows the 
absolute relative error obtained for three various numbers of terms and 
at some test points.

7.4 Example 4. Consider the initial-value problem of Bratu-type 
[7]

( )( ) 2 0,y xy x e′′ − =

 

0 1x≤ ≤ ,                                                                (11)

(0) 0y = , and (0) 0y′ = .                                                                       (12)

The differential transformation of this equation and its initial 
conditions are

2
( 2)

( 1)( 2)
kAY k

k k
+ =

+ +
, (0) 0Y = and (1) 0Y = , 

where kA  are: (0)
0

YA e= , (0)
1 (1) YA Y e= , 

2 (0)
2 [ (2) ( (1)) 2] YA Y Y e= + , 

3 (0)
3 [ (3) (1) (2) ( (1)) 6] YA Y Y Y Y e= + + ,   

The following differential transform components are obtained:

(2) 1Y = , (3) 0Y = , (4) 1 6Y = , (5) 0Y = , (6) 2 45Y = , (7) 0Y = , 
(8) 17 1260Y =  , (9) 0Y = , .

The series solution of problem (11) and (12) up to 10( )O x  is given 
by

2 4 6 8 101 2 17( ) ( )
6 45 1260

y x x x x x O x= + + + + .

This is the same result with that obtained by [7,14]. The closed form 

solution of this problem is )ln(cos2)( xxy −= .

 7.5 Example 5. Consider the nonlinear initial-value problem [7]

( ) 2 ( ) 4 ( )ln( ( )),y x y x y x y x′′ = +

 

0x > ,                                              (13)

(0) 1y = , and (0) 0y′ = .                                                                        (14)

The differential transformation of this equation and its initial 
conditions are

1
1

1
0

1( 2)
( 1)( 2)

2 ( ) 4 ( )
k

k k
k

Y k
k k

Y k Y k A −
=

+ =
+ +

 
 +
 
  

∑
, (0) 1Y = and (1) 0Y = . 

where kA  are: 0 ln (0)A Y= , 1 (1) (0)A Y Y= ,

2
2 (2) (0) ( (1) (0)) 2A Y Y Y Y= − , 

2
3

3

(3) (0) (1) (2) ( (0))

( (1) (0)) 3

A Y Y Y Y Y

Y Y

= + −
,

x Abs. rel. err.,
(5 Terms)

Abs. rel. err.,
(10 Terms) Abs. rel. err., (15 Terms)

0.2 9.12337E-09 0 0

0.4 8.82908E-06 4.80303E-10 0

0.6 0.000468447 1.45549E-06 5.92E-10

0.8 0.007532013 0.000411299 2.95854E-07

Table 2: Numerical comparison of results in example 2.

x Abs. rel. err., (5 Terms) Abs. rel. err.,
(10 Terms)

Abs. rel. err.,
(15 Terms)

0.2 9.10218E-10 0 0

0.4 9.40244E-07 7.01122E-14 6.49916E-15

0.6 5.50308E-05 5.3086E-10 4.48908E-12

0.8 0.000998396 3.04049E-07 2.23E-10

Table 3: Numerical comparison of results in example 3.
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2 2
4

2 3 4

(4) (0) [2 (1) (3) ( (2)) ] ( (0))

( (1)) ( (0)) [ (1) (0)] 4

A Y Y Y Y Y Y

Y Y Y Y

= − + +

−
   

The following differential transform components are obtained: 
(2) 1Y = , (4) 1 2Y = , (6) 1 6Y = , (8) 1 24Y =  ,   . The series solution 

of problem (13) and (14) up to 10( )O x  is given by
2 4 6 8 101 1 1( ) 1 ( )

2 6 24
y x x x x x O x= + + + + + . 

This is the same result with that obtained by [7]. The closed form 
solution of this problem is

2
( ) xy x e=

7.6 Example 6. Consider the nonlinear initial-value problem 
9( ) ( ) ( ),
4

y x y x y x′′ = +                                                                       (15)

(0) 1y = , and (0) 2y′ = .                                                                         (16)

The differential transformation of this problem are
9 4 ( )

( 2)
4( 1)( 2)

kA Y k
Y k

k k
+

+ =
+ +

, (0) 1Y = and (1) 2Y = . 

where kA  are: 0 (0)A Y= , 1 (1) (2 (0))A Y Y= ,

3 22
2

1(2) 2 (0) ( (1)) ( (0))
8

A Y Y Y Y= − , 

3 2
3

5 23

(3) 2 (0) (1) (2) (4( (0)) )

( (1)) (16 (0)) )

A Y Y Y Y Y

Y Y

= − +
, 

4 (4) 2 (0) [2 (1) (3)A Y Y Y Y= −

 
3 22( (2)) ] (8( (0)) )Y Y+

5 22

7 24

3( (1)) (2) (16( (0)) )

5( (1)) (128( (0)) )

Y Y Y

Y Y

+ −
 ,  

The following differential transform components are obtained: 

(2) 13 8Y = , (3) 17 24Y = ,

(4) 149 768Y = ,

(5) 77 1920Y = ,

(6) 641 92160Y = ,

(7) 317 322560Y = ,

(8) 2609 20643840Y = ,

(9) 1277 92897280Y = ,   .

The series solution of problem (15) and (16) up to 10( )O x  is given 
by

2 3

4 5 6

13 17( ) 1 2
8 24

149 77 641
768 1920 92160

y x x x x

x x x

= + + + +

+ +

 

7 8

9 10

317 2609
322560 20643840
1277 ( )

92897280

x x

x O x

+ + +

+
. 

The exact solution of this example is
2

2 29 3 1( ) 1
4 2 6

x xy x e e− 
= + − 

 
.

Table 4 shows the absolute relative error obtained for three various 
numbers of terms and at some test points.

Conclusion
In this work, we present a new approach for applying the differential 

transform method for solving nonlinear initial-value problems. The 
differential transform of the nonlinear term is replaced in the recurrence 
relation by its Adomian polynomial of index k. Hence, the dependent 
variable components are replaced by their corresponding differential 
transforms of the same index. This technique benefits the properties of 
the Adomian polynomials and the efficient algorithm to generate them 
quickly. Also, this technique is dealing directly with nonlinear function 
of the problem in its form without any differentiation or algebraic 
manipulations or even there is no need to compute the differential 
transform of other functions to obtain the required one. The considered 
prototype examples include initial-value problems with different types 
of nonlinearity. These numerical examples have proved good results. 
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x
Abs. rel. err.,

(5 Terms)
Abs. rel. err.,
(10 Terms) Abs. rel. err., (15 Terms)

0.2 7.79747E-08 0 0

0.4 4.8256E-06 9.47535E-12 0

0.6 2.01E-06 2.69667E-09 6.74169E-10

0.8 1.28303E-05 3.5877E-08 2.44062E-09

Table 4: Numerical comparison of results in example 6.
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