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Abstract

Escherichia coli, a gram negative, facultative anaerobic, non-sporulating rod, bacteria are commonly found in
lower intestine as a part of the normal flora of gut in all warm blooded organisms. Most E. coli strains provide many
beneficial functions including protection from other pathogenic bacteria. When E. coli strains acquire genetic material
from others, they can become pathogenic. E. coli strains can be categorized into 5 principal pathogenicity groups;
Enteropathogenic E. coli (EPEC), Enteroaggregative E. coli (EAEC), Enteroinvasive E. coli (EIEC), Enterotoxogenic
E. coli (ETEC) and Enterohaemorrhagic E. coli (EHEC). All these strains can cause diarrhea, gastrointestinal
infections, urinary tract infections, neonatal meningitis and other illnesses in humans as well as in animals. EHEC
O157 is identified readily in the clinical laboratory with standard culturing techniques. All other strain need molecular
methods for their presence in any infected materials.

In this study we isolated a total of 40 cultures and detected different strains of E. coli from humans and birds
(water fowls). In all isolates antibiotic sensitivity by disc diffusion method with genetic characterization within the E.
coli. The result shows that all human E. coli were resistant to 3 antibiotics (Ampicillin, Co-Trimoxazole, and
Cefuroxime), while birds E. coli strains are sensitive to these antibiotics indicates different genomic lineage. In
human isolates EHEC has highest share, however it was not significantly placed. In correlation studies (Pearson’s
Correlation) indicates that its significance to the use of only chloramphenicol (p=0.044). ANOVA as well as
Pearson’s and Spearman’s coefficients show that there is no association with any of the drugs that could be useful
for their treatment. In could be concluded from the antibiotic profile, distribution pattern that the two groups are
epidemiologically are different. Furthermore, it appears that birds don’t contribute to the spread of disease in
humans/animals.

Keywords E. coli; Pathogenicity; Human infection; Antibiotic
resistance

Introduction
Intestinal E. coli is well characterized as an opportunistic

pathogenic species that causes infection in human and animals [1].
Most of these studies are based on serological identification, virulence
factors [2], and the mechanism of pathogenicity [3]. Recently, E. coli 3
strains associated with diarrheal disease is placed into five
pathogenicity groups; Enteroinvasive E. coli (EIEC), Enterotoxogenic
E. coli (ETEC), Enteroaggregative E. coli (EAEC), Enteropathogenic E.
coli (EPEC), and Enterohaemorrhagic E. coli (EHEC). Vero cytotoxin-
producing E. coli (VTEC)/Shiga toxin-producing E. coli (STEC) are
two other common names for later E. coli strains [1,4-7]. Infection
with EIEC strains result in watery diarrhea and occasionally dysentery
syndrome along with blood, mucus and leukocytes in the stool,
tenesmus and fever [7,8]. The primary host for these EIEC human
infections appears to be similar to the disease caused by Shigella

species. [3,9]. Until now they don’t have any reported animal reservoirs
[10,11]. The ETEC outbreaks have been connected to the consumption
of contaminated food or water [12]. Strains of ETEC are best known to
cause traveler’s diarrhea [12,13] and infection to infants in developing
countries [3,7]. These subspecies of E. coli don’t invade tissues neither
they leave the intestine of the host [14,15].

The EAEC on the other hand is most recently been connected to a
category of infectious diarrheagenic E. coli that adhere to tissue culture
cells in vitro. They tend to produce aggregation, adherence and
association to produce persistent, watery diarrhea in young children.
Till now, no mode of pathogenicity has been elucidated for them in
literature [16]. The forth type of E. coli (EPEC) induce a profuse watery
and bloody diarrhea [17]. It is the leading cause of infantile diarrhea in
developing world [3,18]. Transmission has been associated to
consumption of contaminated drinking water and meat products, [15].
Molecular pathogenesis of EPEC has proven to involve plasmid
mediated protein referred to as EPEC Adherence Factor (EAF) [17,19].
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The Verotoxin producing E. coli (VTEC) strain infects humans and
cause severe complications of Hemolytic Uremic Syndrome (HUS)
[20,21]. These are sometime also referred as Enterohaemorrhagic E.
coli (EHEC) or Shiga toxin-producing E. coli (STEC) [11,22]. All these
strains produce Shiga toxin (also known as Verotoxin), a major cause
of food borne illness [23,24]. The Vero cytotoxin has shown to cause
damage to 4 renal and endothelial cells [25].

The best known strains in these organisms have been O157:H7 that
have produced devastations in developed countries [26-28]. Most
EHEC strains carry a plasmid which encodes a haemolysin gene and
chromosomally located Locus of Enterocyte Effacement (LEE) factor
[11,26]. The avian pathogenic E. coli (APEC) strains also cause
intestinal as well as extra intestinal diseases via respiratory tract
infection in birds [29-31]. These species share virulence factors that
include type 1 and P fimbriae, coliaerobactin, lipopolysaccharide
(LPS), K1 capsular antigen, and Temperature Sensitive Hemagglutinin
(TSH) [1]. All of these are linked to uncharacterized specific
chromosomal location [1,32].

The APEC strains can cause most common form of colibacillosis
that initiates with respiratory infection symptoms (air sacculitis) which
later spreads and cause generalized infections (perihepatitis,
pericarditis, and septicemia) [33]. Data from some studies show that
positive relation exists between APEC and human Extraintestinal
Pathogenic E. coli (ExPEC). Numbers of examples are listed in
literature like uropathogenic E. coli (UPEC) causing uremic syndrome
[33-35] and newborn meningitiscausing E. coli (NMEC). This also
suggests that some APEC strains could be considered potential
zoonotic agents [1,3,33].

In our case, a study was initiated to isolate and genotypically classify
E. coli pathogens (groups) from humans and migratory water fowls
and find their commonality. This would provide deeper insight about
the two reservoirs. Antibiotic patterns within the two groups will also
give some evidence about their linkage between human and migratory
birds both at genetic as well as phenotypic nature of E. coli species.

Materials and Methods
Pure cultures of 20 E. coli human were included in the study after

collection from Combined Military Hospital (CMH) Multan
Cantonment and other private laboratories of 5 Multan, Pakistan.
Further, another 20 were isolated and collected from Water Fowls
cloacal/buccal swabs.

Preservation of samples
The isolated and identified cultures were preserved in MicroBank

vials (ProLab, Canada) and kept in freezer at -80°C (Sanyo, Japan).

Study area
The present study was conducted at Micro/Molecular Biology

Laboratory (MMBL), Institute of Pure and Applied Biology (IPAB),
Bahauddin Zakariya University Multan.

Media preparation
All solutions and media were sterilized by autoclaving (Hirayama,

Japan) at 121°C at 15 lbs/sq. inch for 20 minutes. Each plate
(Germany) was made by adding approximately 20 mL of the selective/
differential media after it cools down to 47°C. After solidification of the
media, they were placed in refrigerator until needed for assay.

Antibiotic sensitivity test
Each of antibiotic sensitivity tests were performed on Antibiotic

Sensitivity Sulfonamide (ASS) Agar (Merck, Germany). All stock
culture E. coli were grown overnight in Nutrient broth (Oxide, UK).

Optical density was adjusted to 0.5 OD McFarland’s tube and
cultures were spread on ASS plate with the help of sterile cultural
swabs (China). To each plate an Octadisc™ (HiMedia Laboratories,
India) with selected antibiotics were placed in the middle of plate with
sterilized forceps with gentle press.

The selected Octadiscs™ were impregnated with antibiotics
Tetracycline (TE 30 µg), Gentamicin (GEN 10 µg), Co-Trimoxazole
(COT 25 µg), Ceftriaxone (CTR 30 µg), Cefuroxime (CXM 30 µg),
Chloramphenicol (C 30 µg), Ampicillin (AMP 10 µg), and
Ciprofloxacin (5 µg). Plates were incubator overnight. Antibiotic
sensitivity was read by millimeter scale next day. The results were
recorded as given in Tables 1 and 2.

DNA extraction and PCR
The DNA was extraction from each isolate with both alkaline lysis

method and CTAB methods [36,37]. Multiplex PCR technique was
used for detection of different E. coli subspecies. The amplifications
were done with 8 primers: bfpa, eae, eae-y, lpfa 1.1, lpfa 1.3, lpfa 2.2,
stx1, stx2. List of primer is provided in Table 1.

No. Primers Primer Sequences (5´ ® 3´) Amplicon Primer (mM in Rx) Tm °C

1
STX2-F ATC CTA TTC CCG GGA GTT TAC G

587
1 62

STX2-R GCG TCA TCG TAT ACA CAG GAG C 1 64

2
EAE-y-F CAG GTT GGG GTA ACG GAC TTT AC

472
1 65

EAE-y-R TTG CTT GCG TTT GAG ACT TAC CGT TG 1 66

3
LPFA1.1-F GTG CTG GAT TCA CCA CTA TTC ATC GC

389
0.4 68

LPFA1.1-R GCC TTG TCT GCA CTG GCA TTA ACT TC 0.4 68

4
STX1-F CAG TTA ATG TGG TKG CGA AGG

348
1 60

STX1-R CAC CAG ACA ATG TAA CCG CTG 1 61
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5
BFPA-F AAT GGT GCT TGG GCT TGC TGC

326
0.4 63

BFPA-R GCC GCT TTA TCC AAC CTG GTA 0.4 61

6
IPFA2.2-F CTA CAG GCG GCT GAT GGA ACA

297
0.4 63

IPFA2.2-R GCT AAT ACC AGC GGC AGC ATC GT 0.4 66

7
IPFA1.3-F GGT TGG TGA CAA ATC CCC G

244
0.4 59

IPFA1.3-R CGT CTG GCC TTT ACT CAG A 0.4 57

8
EAE-F CTT TGA CGG TAG TTC ACT GGA CTT C

166
0.4 66

EAE-R GAA GAC GTT ATA GCC CAA CAT ATT TTC AGG 0.4 68

Table 1: Antibiotic sensitivity result.

All PCR reactions were done on conventional Thermocycler
(Eppendorf, Germany) in 20 µL reaction volume (Invitrogen, USA).
Amplifications were run in two step modules with 55 cycles as
indicated in Tables 2a and 2b. Amplicons were analyzed on 1%
Agarose (US Biological, USA) in 1X TBE buffer gel electrophoresis in
mini gel box (Hoefer, USA) with power supply (Pharmacia, Sweden) at
80 volts. The amplified DNAs were stained in 0.5 µg/mL Ethidium
bromide (US Biological, USA) (stock 10 mg/mL) for 10 minutes. All
DNA bands were visualized under UV light transilluminator (UVtec,
USA) and photographed.

Reaction mixture Volume requried

Template (Sample) 1 µl

Master Mix (5X) (REDTaq) 4 µl

Primer concentration 10 µl

PCR grade water 5 µl

Total 20 µl

Table 2a: Reaction mixture for PCR.

Reaction mixture Volume required

Template (Sample) 2 µl

Master Mix (5X) (REDTaq) 4 µl

Primer conc. 10 µl

PCR grade water 4 µl

Total 20 µl

Table 2b: Reaction mixture for PCR.

Results

Antibiotic sensitivity
Comparison of antibiotic sensitivity within the two groups indicates

that they belong to two separate clades with some overlapping (Table
3).

Groups Human Sig. Birds Sig.

TE Between Groups
0.189 0.28

Within Groups

GEN Between Groups
0.353 0.171

Within Groups

COT Between Groups
- 0.437

Within Groups

CTR Between Groups
0.67 0.904

Within Groups

CXM Between Groups
- 0.883

Within Groups

CIP Between Groups
0.394 0.189

Within Groups

C Between Groups
0.044 0.855

Within Groups

AMP Between Groups
- 0.303

Within Groups

Table 3: ANOVA (N=40) (2 tailed analysis with E. coli genetic species).

The human isolates were sensitive to Chloramphenicol (p=0.044
with CL 95%) out of 8 antibiotics tested (Table 1). While on the
contrary, in bird E. coli isolates does not show any significant
association any of the drugs tested (Table 2).

Correlation data indicates that all genetic isolates are negatively
related to resistance to antibiotic gentamycin with no significance. In
birds, Chloramphenicol is highly negative significant to Cefuroxime.
However, Tetracycline, Ceftriaxone show significant association with
the type of isolates (Table 4).

Interestingly gentamycin is only drug which is in negative non-
significant to all isolates. This allows us to infer that resistance in
human isolates to 2nd and 3rd generation antibiotics and in linkage to
waterfowls.
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Sr. No.   Strain Humans (%) Birds (%)

1 Atypical EPEC 3 (15.0) 3 (15.0)

2 Typical EPEC 4 (20.0) 6 (30.0)

3 EHEC 6 (30.0) 4 (20.0)

4 STEC 3 (15.0) 2 (10.0)

5 LEE-STEC 1 (5.0) 0

6 Others 0 1 (5.0)

7 Negative 3 (15.0) 4 (20.0)

Table 4: Distribution of different isolates according to genetic E. coli
groups.

Multiplex E. coli differential amplification technique
(MECDAT)

In this study, the isolated organisms are genetically grouped and
resistances to antibiotics are used to address the issue of spread of
human strains in birds or vice versa. Results show that Application of
Multiplex E. coli Differential Amplification Technique (MECDAT) is
successfully applied in surveillance of E. coli in humans / birds. Data
on the group’s antibiotic sensitograms indicates that the two groups are

with some genetically overlapping differences. Genetic groups show
that atypical and typical EPEC share 35% of human total isolates.
While in birds they have about 45% strains positive. On the other
hand, 50% of human isolates produce shiga toxin as against 30% in
water migratory bird isolates (Table 2).

Discussion
We isolated total of 40 E. coli cultures from humans and migratory

birds during migratory bird season. Of these, collected cultures 20 each
from human and other 20 from water fowls were included in the study.
The human isolates show resistance to 3 antibiotics Ampicillin (AMP),
Co-Trimoxazole, and Ceftriaxone (CXM) (Table 1). Each resistance
pattern evolves itself through genetic selection/genetic transfer
mechanisms [38,39]. In literature, it was observed that diarrheal E. coli
isolates were 86.4% resistant to AMP, and 29.6% to CXM, [40]. On the
contrary, in birds E. coli was sensitive to all these antibiotics (Table 1).
In Jamaica, study highlights the prevalence of multiple drug resistant E.
coli among healthy broiler chickens in Jamaica, West Indies, possibly
associated with expression of tetracycline resistance [41]. The data
show that it didn’t appear to be a common source in multiple drug
resistance strains of avian or human origin, the genes encoding
resistance are similar [41,42]. These results suggest that genes are
disseminated in the environment and more investigative certification
of the possibility for avian sources acting as reservoirs for tetracycline
resistance [41] (Table 5).

Correlations

Pearson’s Correlation Genetic species Type TE GEN COT CTR CXM CIP C AMP

Genetic species
P. Correlation 1

Sig. (2-tailed)

Type
P. Correlation 0.013 1

Sig. (2-tailed) 0.938

Tetracycline
P. Correlation -0.086 0.799* 1

Sig. (2-tailed) 0.598 0

Gentamycin
P. Correlation -0.076 -0.162 -0.051 1

Sig. (2-tailed) 0.639 0.319 0.755

Co-Trimoxazole
P. Correlation -0.056 0.839* 0.632* -0.112 1

Sig. (2-tailed) 0.733 0 0 0.493

Ceftriaxone
P. Correlation -0.084 0.813* 0.712* -0.05 0.796* 1

Sig. (2-tailed) 0.607 0 0 0.759 0

Cefuroxime
P. Correlation 0.139 0.673* 0.572* -0.016 0.653* 0.547* 1

Sig. (2-tailed) 0.392 0 0 0.921 0 0

Ciprofloxacin
P. Correlation 0.105 0.712* 0.416* -0.256 0.682* 0.523* 0.384*** 1

Sig. (2-tailed) 0.518 0 0.008 0.111 0 0.001 0.014

Chloramphenicol
P. Correlation 0.148 -0.343**** -0.380**** -0.009 -0.271 -0.319**** -0.436** 0.102 1

Sig. (2-tailed) 0.363 0.03 0.016 0.955 0.091 0.045 0.005 0.532
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Ampicillin
P. Correlation 0.006 0.874* 0.673* -0.179 0.761* 0.770* 0.559* 0.649* -0.278 1

Sig. (2-tailed) 0.97 0 0 0.268 0 0 0 0 0.082

Table 5: Correlation of different factors and Antibiotics with E. coli genetic strains.

 Note: *Correlation is significant at the 0.01 level (2-tailed). **Negative Correlation is significant
significant at the 0.05 level (2-tailed). ****Negative Correlation is significant at the 0.05 level (2-tailed)

In our hand, 17 human samples provide amplifications with 3 with
no results (Table 2). EHEC was found to be higher in these isolates
with no significance to variants. In birds, a similar pattern, 16 samples
showed amplification with 4 being negative (Table 4). Studies by
Sjolund and coworkers on wild birds and humans concluded that E.
coli isolates were similar [42]. Use of Multiplex E. coli Differential
Amplification Technique (MECDAT), as used in this study, will
provide a long way to identify subspecies with some modifications.
Similar results have been cited elsewhere in the literature. ANOVA
results as well as correlation coefficients indicate that there is no
association with any of the antibiotic that could be useful for their
treatment. The Pearson’s correlation coefficient on antibiotics showed
that Chloramphenicol is significantly placed (p=0.044) at 0.05
confidence limit. Interestingly in birds, genetic grouping showed
overlapping differences to humans. In bird E. coli a typical EPEC class
dominates. The EHEC microbe has rarely been reported in wildlife
with exception to deer and sporadically in domestic animals and birds
[11,17]. The presence of EHEC, though in small numbers is important
in spread of strain to the farthest flinched area with ease. This also
indicates some sort of special association of these E. coli in the
digestive tract of human versus birds. In literature special type of pili
has been assigned to these E. coli for its colonization [43]. This also has
been illustrated from the studies on the gut microbiota of different
migratory birds. These findings are unique, and reported first time in
these migratory waterfowls from Pakistan. The presence of STEC in
humans and birds show minor differences (15.0% vs. 10.0%)
respectively (Table 4). Importance of E. coli O157 type infection is
partly concludes from this study. But like in other studies, presence of
10% of STEC appears too much higher than recent investigators
identification by Neher et al. from India [44]. Though it is also
suggested that presence of seed E. coli strain in these waterfowls may
be important in the spread of new infections, probably not EHEC,
centers from where they can enhance colonization and 9 thereby
spread in the community. Such spread has been documented elsewhere
in the literature [45,46]. In one report, microbiological culturing along
with genomics has indicated that an outbreak could occur by indirect
contact with wild birds’ faeces of VTEC infection in humans [27]. In a
two-year study (2007-2009) in Canada, an important conclusion was
gathered which confirms the isolation of E. coli O157 from faecal pats.
Presence of these organisms suggest that it is inducted in by contact
chain between calves and cattle by ventilation, manure systems and
importantly linked to bird number per milking cow [47]. Wildlife is
normally not exposed to clinically use of antimicrobial agents, but can
acquire antimicrobial resistance through contact with humans,
domesticated animals, environment or water polluted with feces new
putative infection cycles between wildlife, domesticated animals and
humans [48]. Literature has been accumulated which spans for
number of years, indicates that strains initially show small
antimicrobial resistance to Ampicillin, Gentamicin, Streptomycin,
Ciprofloxacin, Chloramphenicol and Tetracycline that later increased
to high levels [49]. In a recent study carried out on 101 E. coli from

broilers and layer hens in Bangladesh with colibacillosis illustrates this
similar phenomenon [50]. Another misnomer about avian E. coli
isolates is there no pathogenicity. The data on avian pathogenic E. coli
(APEC) is not yet clear on the significance of infective ExPECs [50-52].
Recent epidemiological studies have shown similitude in isolates of
human and avian Extraintestinal Pathogenic Escherichia coli (ExPEC)
for their virulence genes [43]. This suggests a probable common
pathogenic mechanism in poultry and mankind. Molecular typing on
animal faecal and from food samples revealed that they cluster into the
same molecular type [51,53]. This also pinpoints that animal/bird
faeces might play a significant reservoir role for EHEC O157 spread.
The survival studies in bird’s intestinal tract of pathogenic bacteria
show that they can survive and can be transferred to humans from
food, animals through faecal contact [54]. Data clearly suggest that
migratory birds can carry E. coli O157:H7 and 10 disseminates to a
large area and distances in short time [54,55]. This all suggests strict
monitoring of all possible food contamination to be reinforced
[53,56,57]. In our data, this plausible issue couldn’t be explained,
elaborative nor suggested otherwise. However, numerous similar
studies provide evidence that APEC ST95 O1 strains cluster with
human ExPEC strains. This again clearly demonstrates its zoonotic
potential [58,59] which we did not explore further in our work. Study
on the APEC strains in a rat model, reveals that APEC's ability to cause
meningitis in mammals, including humans their possible potential
[60]. This imparts good support to our hypothesis that APEC strains
have the potential of zoonosis [30]. Chandran et al. [61], on the
contrary, provides evidence to our conclusion that STEC and EPEC
isolates were genetically distinct from nonpathogenic E. coli and
clustered independently. Some researchers conclude that the presence
of virulence genes alone cannot be used to determine the pathogenicity
of strains. Results show that potentially pathogenic STEC and EPEC
strains can be found in some of the avian hosts studied and may
contaminate surface water and potentially impact human health [62].
Our study concludes and depicts that strict, continuous monitoring
with molecular tools must be a part in epidemiologically important
pathogens for predictive suggestions. These notable differences in
either human or animals should be made public for better preventive
measure as proposed by Ewers and coworkers and others later [45,63].
We at this stage also recommend the following:

• Continuous monitoring of 8 commonly used antibiotic resistances
in human and from other animals, birds be done.

• More funds for surveillance schemes are allocated globally,
especially, in the developing world.

• Pulse Field Gel Electrophoresis (PFGE) profiles and Sequence
analysis facilities/centers will enable us to get close to the
phylogenic evolution of each strain that is seen in our daily life.

• Contribution of genetic transfer/modifications by extra-
chromosomal elements is assessed with genetic exchange methods.

• Yearly monitoring in these migratory birds should be done with
molecular techniques.
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Conclusion
In our study, however, waterfowl birds, reported first time, do show

less similar patterns within the two groups. Moreover, besides these
similarities, differences in the isolates provide some evidence for the
lineage that may have common origin as well as addition of any
isolated source (Table 4). Recent data on ExPEC microbes show that
they produce ‘‘newer β-Lactamases’’ that are encoded on plasmids that
are classified as class C Cephalos porinases (Amp C) β-Lactamases,
Extended Spectrum β-Lactamases (ESBLs) and Carbapenemases (e.g.,
Imipenem, Verona Integrons-encoded Metallo-β-Lactamase (VIM),
New Delhi Metallo-β-Lactamase (NDM types), that are now reported
widespread [1,48]. Presence of resistance in human isolates, especially
with these β-Lactamases, needs further investigation. Recently
Escherichia Albertii is identified as a newly emerging enteric pathogen
[64,65] that has been identified in both animals and humans with
subclinical association to some birds [66]. Ooka et al. [65] has
rightfully identified E. Albertii identified different eae gene that might
be misidentified as EHEC or EPEC. In our work also some of the
isolates, both in human and birds, were not identified by this
subspecies identification system and need further improvements that
should also include E. Albertii like organisms. Additionally, we showed
that a great number of avian ExPEC are probable-Lactamase
producing strains, sinceresistance to amoxicillin/clavulanic acid were
recorded as 70.4% in the isolates [50]. Identification of
Enterohaemorrhagic strains in birds as well in human quae us to make
strict surveillance a mandatory option in food borne pathogens. Thus
in future, our focus and concentration would 12 be towards the
phylogenic mechanistic evolution in birds and animals using
molecular techniques.
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