Diffuse, Subendocardial Vasculitis Identified by Cardiovascular Magnetic Resonance. Use of Images to Learn Pathophysiology

Sophie Mavrogeni*, George Markousis-Mavrogenis and Genovefa Kolovou
Onassis Cardiac Surgery Center, Athens, Greece

*Corresponding author: Sophie Mavrogeni, Onassis Cardiac Surgery Center, Athens, Greece, Tel: 302109882797; E-mail: soma13@otenet.gr

Received date: April 06, 2016; Accepted date: May 05, 2016; Published date: May 08, 2016

Copyright: © 2016 Mavrogeni S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Diffuse Subendocardial Vasculitis (DSV), either primary or secondary, may occur during autoimmune diseases and lead to high mortality and morbidity. Recently, Cardiovascular Magnetic Resonance (CMR), a non-invasive, non-radiating technique, capable to perform tissue characterization has been used in the evaluation of cardiac vasculitis in the autoimmune diseases. CMR by performing tissue characterisation can detect diffuse, subendocardial oedema during the acute phase of DSV. To assess oedema, T2STIR images, T2 mapping and native T1 mapping can be used. Furthermore, diffuse subendocardial fibrosis can be also detected in both acute and chronic DSV. For this purpose, Late Enhanced Images (LGE) should be taken 15 minutes after the intravenous injection of the paramagnetic contrast agent gadolinium. Diffuse, subendocardial scar can be quantified and expressed as percentage of LV mass and this index have an important clinical value together with the LV ejection fraction in both ischemic and nonischemic cardiomyopathy.

DSV can be identified by CMR in both acute and chronic autoimmune diseases. Acute DSV has the potential to be reversed completely by autoimmune and cardiac treatment modification. CMR is a powerful tool to early diagnose DSV and guide therapeutic decisions. However, further studies are needed to establish its impact in the patients’ risk stratification and treatment follow up.

Keywords: Vasculitis; Autoimmune diseases; Cardiac magnetic resonance

Introduction

Vasculitis, either primary or secondary, may occur during autoimmune diseases and lead to high mortality [1,2]. Primary (idiopathic) inflammatory vasculitides may involve large vessels as in Giant Cell Arteritis (GCA) or Takayasu Arteritis (TA), and medium- or small-sized vessels as in Kawasaki Disease (KD), polyarteritis nodosa, Antineutrophilic Cytoplasmic Antibody (ANCA) associated vasculitides, Behcet Disease (BD), primary CNS angiitis, and thromboangiitis obliterans.

Secondary vasculitides may develop during the course of sarcoidosis, systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, infections and angitis after radiation exposure) or conditions that may mimick vasculitis, such as vascular neoplasias and ergotism may also involve large and medium-sized arteries [3].

While advances in serologic testing have succeeded earlier diagnosis, affected patients still present poor outcome, due to lack of accurate diagnostic tool [4]. Recently, Cardiovascular Magnetic Resonance (CMR), a non-invasive, non-radiating technique, capable to perform tissue characterization has been already used in the evaluation of autoimmune diseases [5-8].

Until now, the typical CMR pattern of Diffuse, Subendocardial Vasculitis (DSV) has been described in selected cases including CSS, anti-phospholipid syndrome, systemic lupus erythematosus, and rheumatoid arthritis [8-10].

How Can CMR Detect Diffuse, Subendocardial Vasculitis?

CMR, due to its capability to perform tissue characterisation, can detect diffuse, subendocardial oedema during the acute phase of DSV (Figure 1). To assess oedema, T2STIR images, T2 mapping and native T1 mapping can be used [10,11].

Figure 1: Diffuse subendocardial oedema, due to cardiac vasculitis in a patient with CSS

Furthermore, diffuse subendocardial fibrosis can be also detected (Figure 2) in both acute and chronic DSV. For this purpose, Late
Enhanced Images (LGE) should be taken 15 minutes after the intravenous injection of the paramagnetic contrast agent gadolinium. Diffuse, subendocardial scar can be quantified and expressed as percentage of LV mass and this index have an important clinical value together with the LV ejection fraction in both ischemic and nonischemic cardiomyopathy [12,13] and specifically in Churg Strauss syndrome [14].

Clinical Implications in Diagnosis, Follow Up and Treatment

Until recently, there were only scarce data about vasculitis in autoimmune diseases, due to lack of an accurate diagnostic tool. This is a preliminary review about the clinical implications of CMR-documented DSV in autoimmune diseases. LV impairment can be the common endpoint in a significant percentage of our autoimmune patients, presented with DSV that is in agreement with previous studies, supporting that DSV may contribute to severe LV dysfunction in autoimmune diseases. Acute DSV has the potential to be reversed completely by autoimmune and cardiac treatment modification. CMR is a powerful tool to early diagnose DSV and guide therapeutic decisions. However, further studies are needed to establish its impact in the patients risk stratification and treatment follow up.

DSV can be identified by CMR both in acute and chronic autoimmune diseases. Acute DSV has the potential to be reversed completely by autoimmune and cardiac treatment modification. CMR is a powerful tool to early diagnose DSV and guide therapeutic decisions. However, further studies are needed to establish its impact in the patients risk stratification and treatment follow up.

References

prognostic information in nonischemic cardiomyopathy. JACC Cardiovasc Imaging 6: 944-954.


