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leukemia (CML) is a model of leukemia driven by a single, specific, 
chromosome translocation, the t (9;22) (q22;q11). This translocation, 
leading to a new, hybrid, leukemia-specific gene (BCR-ABL1) encoding 
for a deregulated tyrosine-kinase protein (p210), drives the leukemic 
transformation of hematopoietic stem cells [1-6] and induces the 
progression of the disease from the early chronic phase (CP) to the late 
blastic phase BP) which close the natural history of the disease.

In the 2000s, the introduction of Imatinib, the first tyrosine-
kinase inhibitor (TKI) able to target the protein p210, significantly 
changed the fate of CML to fatal disease in real chronic disease [2]. 
Indeed, more than 80% of CML patients have a life expectancy close 
to that of the general population [7-11]. Imatinib and more recently 
the 2nd generation TKIs, namely Nilotinib, Dasatinib and Bosutinib, 
administered daily at the respective standard doses, by a progressive 
reduction of the Ph+ leukemic clone, can induce complete cytogenetic 
responses (CCyR) in more than 80% to 90% of cases, but, moreover, a 
major molecular response (MMR or MR3.0=BCR-ABL1/ABL transcript 
level < 0.1% IS) and a deep molecular response (DMR) in 70% to 80% 
and 40% to 50% of patients, respectively [12].

The DMR (MR4.0, MR4.5 and MR5.0), defined as BCR-ABL1 
transcript level < 0.01% on the International Scale (IS) or as ABL 
transcript level (housekeeping gene) > 10,000 copies when BCR-ABL1 
results undetectable (Table 1) [12-18], is now considered the most 
ambitious objective of therapy. Actually, we know that about 50% of 
patients achieving DMR are reported to maintain a stable treatment-
free remission (TFR) after discontinuation of TKI treatment [19-22]. 
Thus, the current policy of CML treatment with TKIs is aimed to 
achieve at least a mayor molecular response (MMR or MR3.0), as fast 
as possible, to prevent progression to blastic phase [3-6] and to gain 
the opportunity for treatment discontinuation when a DMR has been 
obtained and maintained for an as yet unspecified period of time 
[18-21,23-25]. Detecting and Monitoring the molecular response by 
quantitative polymerase chain reaction (qPCR) is therefore essential to 
measure minimal residual disease (MRD) [12-15] beyond the limits of 
CCyR and to optimize the management of CML patients on treatment 
with TKIs [3-5,12-18].

However, despite the international efforts to standardize the 
method, qPCR has some intrinsic limitations with regard to its limit 
of detection, the sensitivity to PCR-inhibitors, the reproducibility and 
moreover the loss of accuracy in the quantification of the low level of 
target. These features make it not optimal to select the best candidates 
for discontinuation of TKIs without relapse and to design personalized 
treatment programs, especially in the era of the more potent second 
generation TKIs that produce faster and deeper molecular responses. 
Therefore, overcoming the limits of qPCR should be seen as a necessary 
step forward in order to better manage the therapy with TKIs, to better 
select the candidates for TFR and to optimize the resources [23,25].

In recent years, digital PCR (dPCR) has emerged to provide a 
more sensitive and accurate detection of very low levels of disease 
that accounts for the increasing interest for its use in the clinic 
[26,27]. dPCR, based on the use of the most advanced instrumental 
platforms, is a new technology based on the partitioning of the 
sample in quantities on the scale of nanoliters or even picoliters by 
creating reaction chambers within specially designed chips or within 
sequestering reagents that become thousands of individual droplets. 
Therefore, the sample is randomly distributed into discrete partitions, 
in a way that some contain no nucleic acid template and others contain 
one or more template copies. A Poisson correction can be factored 
into the result to account for chambers that contain more than one 
molecule, and an absolute target sequence quantity can be estimated 
[27]. Moreover, dPCR provides an end-point measurement of absolute 
quantities of nucleic acids without the use of standard curves. Due to its 
characteristics, could the dPCR challenge the technical limits of qPCR 
and lead to a better sensitivity and accuracy of CML MRD detection 
and quantification?

Quant Studio 3D Digital PCR platform (Thermofisher) was applied 
to 350 samples of 120 CML patients, treated with TKIs and achieving 
MMR or DMR by qPCR, in order to obtain an absolute quantification 
of BCR-ABL1. Moreover, dPCR assay was applied also to 20 samples 
obtained by healthy subjects who served as healthy controls. dPCR 

MMR DMR
MR3.0 MR4.0 MR4.5 MR5.0

Minimum sum of ABL1 transcripts 
irrespective of whether BCR-ABL1 

is detected or not
-

10.000 
ABL1 
copies

32.000 
ABL1 
copies

100.000 
ABL1 
copies

BCR-ABL1 IS levels for positive 
samples ≤ 0.1% ≤ 0.01% ≤ 0.0032% ≤ 0.001%

Table 1: Current definition of MR classes following the last IS guide lines.
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results were expressed as BCR-ABL1 copies/µl of reaction and all 
samples was analyzed twice and in blind. Preliminary data show 
heterogeneous levels of BCR-ABL1 copies/µl assessed by dPCR among 
the CML patients grouping within the MR3.0, MR4.0, MR4.5, and MR5.0 
class of molecular response. Importantly, the BCR-ABL1 transcript 
was quantifiable by dPCR also in those cases (n°=86) in whom it was 
below the level of detectability or undetectable by qPCR. Moving from 
MR3.0 to MR5.0 class, a progressive decrease of BCR-ABL1 copies/µl 
measured by dPCR was observed (Figure 1). In patients with MR3.0, 
the median and range of BCR-ABL1 copies/µl assessed by dPCR 
[0.511 (0.232-1.692)] was significantly higher when compared with 
the median and range of BCR-ABL1 copies/µl of patients with MR4.0 
[0.313 (0.079-1.498) p=0.0003], MR4.5 [0.135 (0.072-0.651) p<0.0001] 
or MR5.0 [0.164 (0.074-0.539) p<0.0001] (Figure 1). In the case of 

healthy controls and blanks, the values of BCR-ABL1 copies/µl were 
comprised between 0.000-0.061 and 0.000-0.060, respectively, and 
they were statistically different from the ones measured in the MR3.0, 
MR4.0, MR4.5 and MR5.0 patients’ group (p<0,0001; p<0,0001; p=0.02 
and p<0,0001 respectively). No statistically significant differences were 
observed comparing MR4.0 vs MR4.5 or MR5.0, or MR4.5 vs MR5.0. We 
did not find any linear correlation (R=0.196) between the BCR-ABL1 
copies/µl assessed by dPCR and the values of BCR-ABL1/ABL1% IS 
(Figure 2a). Similarly, we did not find any linear correlation (R=0.184) 
when comparing the BCR-ABL1 copies/µl as assessed by dPCR with the 
absolute copy number of BCR-ABL1 transcripts as assessed by qPCR, 
when detectable (Figure 2b). However, examining the distribution of 
the cases in the latter analysis, two distinct populations emerged. In 
order to identify the sub-population showing a different distribution, a 
case by case analysis was performed and it revealed a linear correlation 
(R=0.68) for the cases with an absolute copy number of BCR-ABL1 
transcript >80 as assessed by qPCR (Figure. 2c). This population 
included 11 samples, all belonging to the MR3.0 class. Using the one-way 
ANOVA test, including all the patients with detectable and undetectable 
BCR-ABL1 transcript by qPCR, we find a correlation between dPCR 
BCR-ABL1 levels and the MR3.0 class, while no correlation has been 
found when dPCR BCR-ABL1 levels were compared with the MR4.0, 
MR4.5 and MR5.0 class, separately analyzed. The ROC analysis indicated 
the value of 0.468 BCR-ABL1 copies/µl as the value below which 
the patients with lower levels of minimal residual disease might be 
dissected (specificity=71%, sensitivity=78%; AUC=0,79). Below the 
value of 0.468 BCR-ABL1 copies/µl fell 246/350 (70%) samples, of 
whom: 48/52 (92%) with MR5.0; 88/94 (94%) with MR4.5; 72/98 (73%) 
with MR4.0; and 38/106 (36%) with MR3.0. These data suggest that high 
amounts of BCR-ABL1 transcript are well quantified by qPCR, while 
minimal ones may be better detected and quantified using a dPCR 
approach. This hypothesis is confirmed by different statistical analysis. 
According to our data, dPCR analysis seems to be useful for a better 
stratification of patients in DMR. This is very important because DMRs 
are patients potentially eligible for TKI discontinuation and they could 
be better identified if tested for MR both by qPCR and by dPCR.

More recently, Droplet Digital™ PCR system (Bio-Rad) was used 
to test cDNA samples from CML patients, in chronic phase, treated 
with TKIs, within the ENEST1st [28] or EURO-SKI [29] clinical trials 
and out of controlled clinical trials [30]. All these studies unanimously 
conclude in saying that the dPCR is more sensitive and accurate than 
the qPCR for the quantification of BCR-ABL1 transcript, and that it 
can contribute to a better identification and stratification of patients 
with deep molecular response [28-30]. The data obtained in this 
preliminary cohort of patients are limited and a systematic comparative 
study should be done in the future to understand the power of dPCR 
in discriminating the clinical relevance of different levels of minimal 

Figure 1: Distribution of BCR-ABL1 copies/µl measured by dPCR in the patients 
belonging to the MR3.0, MR4.0, MR4.5, MR5.0 classes of response as determined 
by qPCR.

Figure 2(a): Linear regression analysis between qPCR BCR-ABL1/ABL1 IS 
%, and dPCR BCR-ABL1 copies/µl. MR undetectable were excluded from the 
linear regression analysis.

Figure 2(b): Linear regression analysis between qPCR BCR-ABL1 copies/
reaction and dPCR BCR-ABL1 copies/µl. MR undetectable were excluded from 
the linear regression analysis.

Figure 2(c): Linear regression analysis between qPCR BCR-ABL1 copies/
reaction >80 copies and dPCR BCR-ABL1 copies/µl.
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residual disease and in detecting the best responders. This is an 
important point and it is very likely that the criteria for scoring MR as 
we know them today will be revised in the light of the systematic use 
of dPCR.
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