ISSN: 1736-4337

Theory and Applications

Journal of Generalized Lie

Khalaf, J Generalized Lie Theory Appl 2017, 11:3
DOI: 10.4172/1736-4337.1000284

Directed*-topology and Scott*-topology on Transitive Binary Relational

Sets

Mohammed Khalaf M"*
"High Institute of Engineering and Technology King Marioutt P.O. Box 3135, Egypt

2Mathematics Department, Faculty of Science in Zulfi, Majmaah University, Zulfi 11932, P.O. Box 1712, Saudi Arabia

Abstract

In this work we naturally put forth an open question whether one may construct a scott-topology on transitive
binary relational sets (so called TRS). We prove that a TRS gives rise to several natural topologies defined in terms
of the given TRS structure. Mainly, we consider directed topologies and scott topologies on TRS and their interactions
with the continuity property of TRS. Most of our results are generalizations of corresponding results in references as
we will illustrate. Sometimes we need pre-ordered sets instead of TRS.
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Introduction

In domain and poset [1-3], Scott-topologies were defined. Abramsky
and Jung [4] introduced the concepts of continuous directed complete
posets (continuous domain) and algebraic domains. Heckmam [1]
studied these conceptes by more details and explained a interactions
between Scott-topology and these notions. Also, add the concepts
of bounded complete posets, bounded complete domains, finitely
complete posets, finitely complete domains, finitarily complete posets
[5-8]. Hoffmann and Lawson [8-10] gives the concepts of continuous
posets. And in more general fashion by Markowsky [11] and Eme [12].
Nino-Salcedo [3], add by deep studies the concept of algebric posets.
We note that the concept of continuous posets (resp., algebraic posets)
in the sense of Nino-Salcedo and continuous domain (resp., algebraic
domain) of R are the same. Zhang [13] studied a type of continuous
poset which a generalizations of the continuous poset in the sense of
Nino-Salcedo. and add some interactions between bounded complete
domains, Scott topology and Lawson topology. This work is devoted to
introduce and study the continuity and algebraicness properties of TRS.
Our results extended the results in posets and in domains [1-3,13]. The
concepts of upper bound (for short ub), lower bound (for short Ib), least
upper bound (for short), gretest lower bound (for short) in any poset
are clear also, some concepts in mathematical logics my building some
times needs these facts [14].

To solve the problem we first introduce the following concepts.
Definition 1.1

Let '<’ be a binary relation set on X#¢. Then;

(1) '<'is called reflexive iff VxX, x<x [14];

(2) '<'is called antisymetric iff Vx,ye X, x<y and y<xx=y [14];

(3) '<"is called transitive iff Vx,y,zeX, x<y and y<zx=z [14];

(4) '<'is called symetric iff Vx,ye X, x<y = y<x [14];

(5) '<'is called interpolative iff Vx,ze X, with xz, 3 yX s.t. xy<z [1,15].

(6) if '<'satisfies the conditions (1), (2) and (3), then (X, <) is called
Partialy order set (Poset) [14];

(7) if '<'satisfies the conditions (1), and (3), then (X, <) is called pre-

orderd set (Quasi set) [14];

(8) if '<'satisfies the conditions (1), (2), (3) and (4), then (X, <) is
called an equvalence set,

(9) if '<'satisfies the conditions (3) and (5), then (X, <) is a
Continuous information system [15,16].

(10) if '<'satisfies the conditions (3), and VxeX, and for every finite
subsetA of X the following axiom holds: if VyA, y<x then 3 zX s.t. VyA,
y<z and zx, then (X, <) is abstract basis [17].

Definition 1.2
Let AX. Then:

(1) A is called directed subset of X iff A#¢$ and Vx,yeA, 3 zA s.t. xz
and yz [1];

(2) The lower (resp. upper) closure in X of A is denoted by A
(resp. TA) and defined as follows: VA={xeX:IyAs.tx<y} (resp.
TA={xeX:AyAs.t.y<x})[1]

(3) The convex hull A is denoted by JA and defined as follows:
TA=lATA[L);

(4) Let A,BcX.B is called cofinal in A iff BAcY(B) [1].
Definition 1.3
Let AX. Then:

(1) A subset A of the domain [1] (resp. Poset) X is called directed
closed (d-closed for short) iff V directed subset D of A,(D)eA;

(2) A subset A of the Poset X is called Scott-closed iff A is d-closed
lower subset of X [3];
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(3) A is called d-(resp. Scott-) open iff A¢ d-(resp. Scott-) closed [1,3];

(4) Let x,yeX. We say x below (resp.y is way above) y (resp. x),
denoted by x<<y iff VDX, s.t.D is directed subset of X with D exists
and y<D, 3dD s.t. xd. The family of all elements in X each of which
way above (resp. way below) x is denoted and defined as follows:
ﬂx:{yeX:x<<y}(resp. Ux:{yeX:y<<x}[3];

(5) Let xeX. If x<<x, then x is said to be isolated. The family of
all isolated points above (resp. below) xeX is denoted and defined by:
T x={yeXiy<<y and x<y} resp. ¥, x={yX:y<<y and yx}[3].

Proposition 1.1: (Proposition 3.5.2 [1]). Let X. be a domain, we
have:

(1) X and ¢ are d-closed;
(2) The intersection of a family of d-closed sets is d-closed; and

(3)The union of two of d-closed sets is d-closed. Then the family of
all d-open sets in a domain X is a topology on X.

Proposition 1.2: (Proposition 3.6.2 [1]) Let X. be a poset, we have:
(1) X and ¢ are Scott-closed;
(2) Arbitrary intersection of Scott-closed sets is Scott-closed; and

(3) Finite union of two of Scott-closed sets is Scott-closed. Then the
family of all Scott-open sets in a poset X is a topology on X. Furthermore
it is T.-topology.

Proposition 1.3: (Proposition 3.5.3(3) [1]) In a domain (X,<). Let F
be a finite set X. Then VF is d-closed subset.

Definition 1.4

For any poset X consider the following topologies:

(1) 5, ={A4 < X : Aisd —open} is a topology on X (see proposition
3.5.2 [1]) in the case of X is a domain) and is called the directed
topology) (d-topology for short);

(2) 8, = {4 < X : disanuppersubset} is a topology on X ([1]) in

the case of X is a domain) and is called the Alexandroff topology) (Alex-
topology for short);

(3) 6;={A4c X : AisScott opensubset} is a topology on X [1-3]
and is called the Scott- topology);

(4) The upper topology on X is denoted by §,,and is the topology
generated by subbasis {X— dxixe X} [2];

(5) TheLower topology on X is denoted by J, and is the topology
generated by subbasis {X— Txixe X} [2];

(6) The interval topology &, on X is the supremum of §,,and §, i.e.,
61 :5[1 L (2]

(7) The Lowson topology J, on X is the supremum of §;and § i.e.,
15 =0, 05 [2].

(8) Let (X,0) be a topological space, and let AcX,
then the closure of A denoted by cl() defined as follows
cly(A)=n{F ¢ X : Fis6 —closed and A < F} [14].

Theorem 1.1: (Remark 1.4 (ii) [7]). Let X be a complete lattice.
Then, Vxe X, { x.e clgs({x}).

Proposition 1.4: (Theorem 6.1.2 [1]). A point x is an isolated iff the
upper cone Txis Scott-open.

Proposition 1.5: (Proposition 6.7.7 [1]). Let (X,<) be a continuous
domin. Then VxeX, the set lx is Scott-open.

Proposition 1.6: (Proposition 6.7.8 [1]). In a continuous domain X,
x<<y holds iff there is a Scott-open set O s.t. yeOc T x.

Theorem 1.2: (Theorem 6.7.9 [1]). A domain (X, <) is continuous
iff it has the local upper cone property: forevery x€X, and for every
Oedy,st xeO,3 Oand x € X st,xe0'c Tx co.

Definition 1.5

A space X is called a T.-space iff for two distinct points x,yeX,
JAcX s.t. either xA,ye X—A or yA,xe X—A [14].

Definition 1.6

Let (X,<)) and (X,<,) be TRS and let f:(X,<))—>(Y,,) be a function
[2]. Then:

(1) fis monotone iff f(4) <, f(u), whenever A<,

(2) fis called Scott-continuous iff VG e(85)y, [T(G)e(Sy)ys
where (8), (resp. (8,),) is the Scott-topology on Y induced by < (resp.
on X induced by <)).

Definition 1.7
Let (X,< )and (X,<)) be TRS and let ./ : (X,(5A‘x)x) d (Y,(5A‘X)y)

—1 2
is called Alexandroff-continuous iff f is monotone, (5,,)y (resp.,
(6A‘x)y) is the Alexandroff-topology on X (resp., on Y) induced by

< (resp. <)).

Directed*-Open, Scott*-Open Sets and Transitive Binary
Relational Sets

Definition 2.1

Atransitive binary relational set (TRS for short) is a pair (X,<)
cwhere X¢ and '<'is a transitive binary relation set.

Example 2.1: Partialy order set, pre-orderd set, continuous
information system, equivalence set and abstract basis is TRS.

Remark 2.1: Abstract basis = Continuous information system, the
converse is not true, so give the following example

Example 2.2: LetX={x,y,z} and let <= {(x,x), (3, y), (x,2), (,2)},
because

x<x=>dxeXst,x<x<x;

y<y=>3dyeXst,y<y<y,

x<z=>3dxeXst,x<x<zand

y<z=>3dyeXst,y<y<z
then < transitive and interpolative. Now, Let A={x,y}. Then x < zand
y<zbut Vge X,a & z. Hence (X,<)i s not abstract basis.

Definition 2.2

Let (X,<) be a TRS. Then:

(1) D is called directed subset of X iff D=¢ and for every distinct
points (x# y)e D,3ze D nub({x,y});

(2) D is called S-directed subset of X iff D is a directed subset and
VxeD,({x})nD=¢.

Remark 2.2: S-directed subset=> directed subset, the converse is
not true, so give the following example.
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Example 2.3: Let < be TRS on X = {x,y,z,I,m} define by x<y.
Then {x} is directed subset but not S-directed subset.

Definition 2.3
Let (X,<) be a TRS. Then:

(1) A subset A of X is called d*-closed iff for every S-directed subset
Dof A,

(D)cA and VxA, ({x})A,

(2) A subset A of X is called Scott*-closed iff A is d-closed lower
subset,

(3) A subset A of X is called d-open (resp. Scott-open) iff A° is d-
closed (resp. Scott-closed).

Theorem 2.1: Let (X,<) be a TRS. Then:

(1) A subset y of X is called d-open iff for every S-directed subset D
of X,st.(D)nu+g,

and Vxe X,({x})Nu#¢,x¢u, and
(2) A subset u of X is called Scott*-open iff ¢ is d*-open upper subset.
Proof: (1) The proof is obtained logically as follows:

Let E, be the set of all S-directed subset of X.And Let P =D is
S-directed subset '= D e ES ;
0= Dci;
R=(D)c
L=xeX;
S=xel;
H= (e i,
Now, A is d*-closed
=PAQO=>RALAS=>H)=PA(—R=-0)ALA(-H = -S5)=4°
is d*-open. Then ¢ is d*-open
=DeEYA((D)NA)#g=(DNA)#g)A(xe AN NA) == x e A7
Then u is d-open iff VDeEgst(D)nu#¢g, and
VxeX,({x)nu+p, x¢ u.
(2) By the same fashion

Theorem 2.2: Let (X,<) be a TRS. If A is d-closed (resp. d-open)
subset of X then A is d*-closed (resp. d*-open).

Proof: Only prove the stament. Let D be an S-directed subset of A.
So since A is d-closed, then (D)cA. Also, VxeA{x}, directed subset of A
so that ({x}cA. Hence A is d-closed.

Corollarly 2.1: From Theorem 2.1. Let (X,<) be a TRS. If A is Scott-
closed (resp. Scott-open) subset of X, then A is Scott*-closed (resp.
Scott*-open).

Open problem if A is d*-open subset of a TRS, then A is d-open.
Theorem 2.3: Let (X,<) be a pre-orderd set and AcX. Then:
(1) A of X is directed subset iff A is an S -directed subset of X;

(2) Ais d-open (resp. d-closed, Scott-closed, Scott-open) subset of X
iff A is d*-open (rep. d*-closed, Scott*-closed, Scott*-open).

Proposition 2.1: Let \,ueX. If y directed subset and cofinal in A,
then A is directed subset and (1)=().

Proof: First, we prove that A is direct subset. Since cA, then
A=p. Let Lmed st I#m. 'Then 3b,b, ey st. 1<h,m<b,

and dbeAnub({l,m}). Hence A is directed
Scound, one ub(u) cub(A).  Conversely,
yeub(l)=>3Jaecistaty=3Tael () = Ibeyu st a<h

subset.
can deduce that

and afy=3beu st.b£y=yeub(u). Hence ub(u)c ub(A).
Thus (1)=().

The following theorem is a generalization of the corresponding
result in Proposition 1.1 (Proposition 3.5.2 [1]).

Theorem 2.4: Let (X,<) be a TRS. If Vxe X, ({x})#¢, then
54* = {/1 cX:disd® —open} is a topology on X (called directed*-
topology on X).

Proof: (1) Clearly X and ¢ are d*-closed sets. So X and ¢ are d*-open
sets;

(2) Let A and p be d*-open sets. Then A° and ybe X be d*-closed
sets. Let D be an S-directed subset of A° Up‘. Thus D =(DA°) or (Dyc).
We need to prove that either (D) or (Dye) is cofinal in D. Suppose
D)* is not cofinal in D, then 3d eD st.VaeDNA, d, %a.
If dek, then ({d})cA Thus ImeDNA°,d £a st.d <m.
Acontraduction. Hence d,ep’. Let deD std=#d,. Then

3d e D nub({d.,d}). If d\, then d. < d which leads to a
contaduction. So, d' € u‘,ie.,Dc IDn ¢, Hence Dy is cofinal in
D. Now we prove that Dy¢ is directed. Let b, b, € Dy’ s.t.b #b,.
Thus 3deDnub({b,b,}). Thus TkeDnust.d<k. So,
ke (D u®)nub({b,b,}). Hence Dry‘is directed. From Proposition

2.1. (D)=(Dyf). Now Dy is S-directed (Indeed, let le Dyc. Since
D is S-directed, 3m e ({I}) st.me D. Also, since u is d-closed, then

UMcp. Thus me DNy ie,(DNu’)N({l})#¢. Hence Dy is
directed). Then (D)=(Dnu)cu’ cu ni’. Also, if xepds,
then ({x})cuA. So uUA* is d*-closed so that Amy is d-open, and (3)
Let{), : icI} be a family of d*-open subsets of X. Then {47 :ie /| isa
family of d-closed subsets of X. Let D be an S-directed subset of ic/7; -
So, DcA® Viel. Then (D)y=A° Viel. So that (D)= A
Let le,, A5, then (g)=i vier. Thus ({{})=A° Viel. So that
({1}) =, 4. Then i1’ is d-closed. Hence et is d-open.
Proposition 2.2: (1) X and¢ areLower (resp. upper) subsets; and

(2) If {4 :iel} be a family of Lower (resp. upper) subsets of X,
then i« and i« are Lower (resp. upper) subsets.

Theorem 2.5: Let (X,<) be a TRS. If Vxe X, ({x})#¢, then
6,=1Ac< X:AisScott” —open} is a topology on X (called Scott*-
toﬁology on X).

Proof: Follow from Proposition 2.2. and Theorem 2.4.

Remark 2.2: Each pre-orderd set is a TRS satisfies VxX,({x})#¢. the
converse is not true, so give the following example.

Example 2.4: Let < be a binary relation on X={x,y,z} define by x<z,
y<z and z<z. Then (X,<) is TRS and VxeX,({x})={z}#¢. But (X,<) is not
pre-orderd set because < is not reflexive.

Theorem 2.6: Let (X,<) be a TRS and let xe X. Then Yx is Scott-closed.

Proof: (1) Let y4 ({x). then Azdx 5.t. y<z so that ye Lx. Hence dx is
a lower subset of X.
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(2) Let D be a directed subsets of {x and let me (D). Now xeub(D)
and thus m<x i.e., medx. Then (D) x. Hence {x is d-closed. From (1)
and (2) we have dx is Scott-closed.

Corollarly 2.2: Let (X,<) be a TRS 54V xe X, ({x})#¢. Then
Ve X, X-{xe &

Theorem 2.7: Let (X,<) be pre-orderd set. Then ¥ x = cls ({x3}).
Proof: From Corollarly 2.2. X— Ixe J;. Since x<x, x < x,

then ey (1) = {Fc X:F isd —closedand {x} c F} cd x {l FCX:F is & —closedand{x} ¢ F}
={F c X:F isd; —closedand{x} c F} = cls ({x}).

The following theorem is a generalization of the corresponding
result in Proposition 1.3 (Proposition 3.5.3(3) [1]).

Theorem 2.8: Let F be a finite set in pre-orderd set (X,<). Then
X-\Fes,.

Proof: Since zel«F<:>EIxer.t.sz@ze{ix:xeF }
Then On can deduce ¥ F= {i« x:xelF } From Theorem 2.7.

Vv xe X,y x is Scott-closed. Since the union of finitaly number of
d-closed is Scott-closed subset, then 4 F is Scott-closed subset so that

X-1Fe g-
Definition 2.4

Let (X,<)be a TRS. and let (X,6) be a topological space,Then (X,<,0)
is called a topological TRS.

Definition 2.5

Let (X,5,6) is called a topological TRS. The topological space (X,6)
is called transitive- T,(TRS—T for short) iff Vx, yeX,sit either xﬁ yor
yiéx,JueSst.xeu,ygu or y €U, X U

Lemma 2.1: Let (X,<) be a TRS. and let § be a topology on X, Then
(X,0) is TRS-T.iff V x,y € X, st. x £ y or y&x, either x € cl;({y}) or
ved,(ix).

Proposition 2.3: Let (X,<) be a TRS. and let § be a topology on X,
Then:

(1) If < is antisymmetric and (X,6) is TRS —T. then (X,0) is T

(2) If < is reflexive and (X,) is T, then (X,) is TRS —T.

The following theorem is a generalization of the corresponding
result in Theorem 1.1 (Remark 1.4 (ii) [7]).

Theorem 2.9: Let (X,<) be pre-orderd set, then (X,8,) is TRS -T..

Proof: ¥ x,y € X, s. either x£y or y£x, Then xy or ylx. From
Theorem 2.7, x € cl(ys y}) or v < cl{,.s ({x}). Hence from Lemma 2.1,
(X,d,) is TRS—T.

Theorem 2.10: Let (X,<) be pre-orderd set. Then a specialization
pre-ordered relation <; induced by <.

N()S
Proof: x S, y@xeclds({y}):»Ly@xSy.
Interactions between a Continuous TRS and Its Scott*-
Topology

The following theorem is a generalization of the corresponding
result in Proposition 1.4 (Theorem 6.1.2 [1]).

Theorem 3.1: (1) Let (X,)be a TRS and xX is an isolated point, then

Txis Scott-open,

(2) Let (X,<)be a TRS and for some xeX, Tx is d-open subset of X,
then x is an isolated point.

Proof: (1) Let D be a directed subset of X and assume that
(D)N T x#g¢. Thus JyeX st yeTx and y(D). Then xed(D).
Since x<<x, then 3deDst.deT x. Hence DN T x # @. Then Tx is
d-open. Since Tx is upper subset, then Tx is Scott-open.

(2) Let D be a directed subset of X and x{(D). Then
Ime(D) st.x<m so that me (D) T x. Since Tx is d-open, then
Dme:tqﬁ, ie,ddeDst.x<d.

Hence x<<x.

Corollarly 3.1: (1) Let (X,) bea TRS st.V xe X, ({x}) # ¢. if xeX
is an isolated point, then Txe 85; and

(2) If(X,<)is a pre-orderd set and for some x€X, Tx(SS (moreover )
then is an isolated point.

Proposition 3.1: Let (X,<) be a TRS. Let x,y,z€ X. Then:
(1) If x<y and y<<z, then x<<z;

(2) If x<<y and y<z, then x<<z;

(3) If ({y}) ¢ and x<<y, then xy;

(4) If({yh ¢ or({z})=¢, x<<y and y<<z then x<<z.

Proof: (1) Let D be a directed subset of X s.t. z24(D). Then 3dD
s.t.yd. Then xd and hence x<<z.

(2) Let Dbeadirected subsetof Xs.t.zL(D). Then3 k e (D) st.z <k.
Thus yk and so yed(D). Therefore 3 € D s.t. x <. hence x<<z.

(3) Let D={y} and assume that x<<y. Then 3d € D s.t. x < d but y=d
Thus x<y.

(4) The proof follow directly from (1) and (3) above.

The following theorem is a generalization of the corresponding
result in Proposition 1.5 (Proposition 6.7.7 [1]).

Theorem 3.2: Let (X,<) be a TRS. If ‘<< * is interpolative, then
v xe X, x is Scott-open.

Proof: First let 2T (Nx). Then Jyx s.t. yz. From Proposition 3.1.(2)
zellx. Hence flx is upper subset of X. Second Let, D be a directed
subset of X with ! x| (D) # 4. Then 3z <X stz e (D) because

for each element z € (D), z<z) andzeflx. So, Iy e X st x Ky <z
and so that 3d € D st. y <d. From Proposition 3.1.(2) dflx. Hence
DNl x=g.

Definition 3.1

(X,S)is a continuous TRS iff VxX, the following conditions are
satisfied:

(1) ({xh)=¢

(2) Ux be a directed subset of X, and

3) xe(({(Ua):aclx})).

Corollarly 3.2: If (X,<) is a continuous TRS, then VxeX, ﬂx(?s.

Theorem 3.3: Let (X,<) be a pre-orderd set and let x,yX. If 3O (open
set) in § s.t. yeOcTx, then x<<y.

Proof: Let D be a directed subset of X s.t yei(D). Then 3m(D)
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s.t. y<m. Since yeTyTOgO, then m e (D) Od.e.(D)N O #¢. Then
dd e D st.d eOc T x, i.e.x <d. Hence x<<y.

The following theorem is a generalization of the corresponding
result in Proposition 1.6 (Proposition 6.7.8 [1]).

Theorem 3.4: Let (X,<) be a TRS. s.t.VzX, ({z})#¢ and assume that
‘<<’ is interpolative. If V X,y € X, st x<y, then 3 a Scott-open
subset O of X s.t. y eOc T x.

Proof: From Theorem 3.2. M is Scott-open. Let yeﬂx ie. x<<y.
From Proposition 3.1.(3), ye M. Hence ye MxTx.

Theorem 3.5: Let (X,<) be a continuous pre-orderd set. Then
vxeX, and VOed; with zeO for some ze( x),z€0 €&, and
xeX st yeO'ngl cO.

Proof: Let VxX and let Oed, with zeOfor some z(Ux). Then
(Ux)mo;tqb. Thus 3x € x O so that T x' = TO cO. From Theorem

3.4.andsince ¥ cx,30'ed; st xeOcTx' cToco.

Theorem 3.6: Let (X,<) be domain pre-orderd set. If VxeX, and
Y Oed; ,Elo'eé‘s and 3x eX st er'ng/ cO, then 3 a
directed subsets D of | x sz.xed (D).

Proof: Let D={ueX:30,e8, with xeO,cTu}. From
Theorem 3.3, DgUx. Since X iteslf is Scott-open and xX, then there
are yeX and O,€d; st xeO,C T y. Then D¢. Let u,veD s.t.uv.
Then, there 30,,0, €, st.xeO,cTu and xeO,cTv. Since
x€0,NO,, there IwX and O, J; st x €O, Twc0,n0O,. Then
wD and wTunTv. So u<w and v<w. Then D is directed subsets of Ux.
Now there are yeX and O, €dy st.xeO,c T y cO. Thus yDNO.
Let me(D), then ym. Since O is upper subset, then mO. Now x <5 m.
From Theorem 2.11, xm. Hence x4(D). ’

The following theorem is a generalization of the corresponding
result in Theorem 1.2 (Theorem 6.7.9 [1]).

Theorem 3.7: Let (X,<) be domain pre-orderd set. Assume that If
VxX, and VO € §; ,3z e (U x) nO. Then the following statments are
equivalent:

(1) (X,<) be a continuous TRS, and
(2) (a) <<’ is interpolative,

(b) VxX, VOe€d, with xeO there are O'ed, and xeX s.t.
er'ng’gO.

Proof: Applying Theorem 3.4, Theorem 3.5, Theorem 3.6. the
results holds.

An Application on Topological Spaces

From Theorem 2.6, one can assign for any topology J, a new
topology S(8) where S(9) is Scott-topology induced by the specialization
pre-ordered relation <; induced by §.

Theorem 4.1: Let (X,8) be a topological space Then:

(1) (X,S(8)) be a topological space is TRS—T.w.r.t, the pre-ordered
relation 55 ;and

(2) If (X,0) is T.-space, then (X,S(9)) so is.
Proof: (1) The result is a corollary from Theorem 2.9.
(2) From Proposition 4.3.3 [1], if (X,8) is T.-space, then <¢ is a

partially ordered relation. So, from Theorem 2.9. and proposition 2.3.
one can have the (X,5(9)) is T.-space.

Theorem 4.2: Let (X,<)be a pre-orderd set. Then S())=,.

Proof: The result follows from Theorem 2.10.
More Topologies on TRS and More on Functions
between TRS

Proposition 5.1: (page 10 [2]). In (X)), let de X. Then:
() disa principle ideal; and
(2) Td is a principle filter.
Definition 5.1
Let (X,<)be a TRS. V €X, ({x})#¢. Define topologies:

( 1 ) 5/1‘)(
topology on X called the Alexandroff topology;

= {4 < X : A is anuppersubset} (see Proposition 5.1.) is a

(2) The upper topology on X is induced by & and is the topology
generated by subbasis { X-dxixeX };

(3) The lower topology on X is denoted by d,and is the topology
generated by subbasis {X -Tx:ixe X};

(4) The interval topology 8, on X is the supremum of § and §, i.e
6 =0 ;
X Cap
(5) The Lowson topology 8/55 on X is the supremum of 6/3 and §; i.e

05=40

Definition 5.2

Let (X,<)and (X,<,) be TRS and let A,ueX and let £:(X,<)—>(Y,)

be a function. Then fis monotone iff 1)< f(u), whenever A<, and p<

Lemma 5.1: If (X,<)) and (X,<)) be are pre-order sets then the
function f:(X,<)—(Y,,) is TRS monotone iff it is monotone.
Proof: Obvious.

Theorem 5.1: Let (X,<) be pre-orderd set. Then the following
statments are hold:

05,8 @) &<5,, ()5<s,
4 8,<8,, (5 6,<8,, (65,5,
(N 8,<8, (8)8,=8,1n5,, (96,55,
(10)5, <68, (11)8, <6,

In the following Theorem we give a characterization of Alexandroff-
continuous between TRS.

Theorem 5.2: Let (X,<)) and (X,<)) be TRS and let £:(X,< )—>(X,,) be

a function. Then fis Alexandroff-continuous iff f is monotone.

Proof: (=) Let A,ueX s.t.A<. Since { flu) is a lower set in Y, then
fl(if(y)) is a lower set in X. From the fact e fl(l«f(y)) one can have that

Aef' (Lfiw)). Then VS fi).

(«<=) Let F be a lower set in Y, i.e., an Alexandroff-closed in Y. We
need to prove that f'(F) is a lower set in X. Let )Lei«f’l(F). Then Juef(F)
s.t., A<, So, fO< f(u). Since F be a lower set, then flA)€F, i.e., Aef'(F)
Hence f'(F) is Alexandroff-closed subset in X.

Lemma 5.1: Let (X,<)) and (Y,<)) be TRS and let f:(X,<))—(X,,) be
a function and let
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(1) If fis Scott*-continuous, then fis TRS—monotone, and

(2) If for any direcrted subset D of X s.t. sup (D)#¢, f(,(D))=,(f(D)),
then fis TRS—monotone.

Proof: (1) Let L,ueX s.t. A< p. and u<,. From Theorem 2.6. Lfw)
is Scott* -closed so thatf’l(l«f(y)) is a lower set in X. It is dear that ye
F O Aw). Then Aef (Lf(w)) so that AV fiw).

(2) Let LueX s.t.A< and u<. Then D={,u} is direcrted subset of
X and pe (D). So flu)ef(X(D))=X(f(D)). Thus f(u)>,f(A). Hence f is
TRS—monotone.

From Lemma 5.1 one can have the following Corollary.

Corollary 5.1: Let (X,<)) and (X,<,) be are pre-order sets and let
f(X,£))—>(Y,<,)be the function. Then:

(1) If fis Scott*-continuous, then fis monotone, and

(2)Ifforanydirecrted subset Dof X si. 4 &, sup (D) # ¢, f(, (D)) =, (f (D)),
then fis monotone.

Lemma 5.2: Let (X,<)) and (X,<,) be TRS and let f:(X,<)—>(Y,,) be
a monotone function. If D is directed subset of X, then f{D) is a directed
subset of Y

Proof: Let 4,4, € f(D) st. A #A, then3 p,p, € D.st. p # ,,
and f(b)=a, and f(u,)=A,. Since D is directed, then ce D.st.c2 u,
and ¢, .. So, flo)efiD) st. f(¢) 2, € f(u) =4 and f()2, f(u,) =2,
Then f(D) is a directed subset of Y.
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