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Abstract
In this work we naturally put forth an open question whether one may construct a scott-topology on transitive 

binary relational sets (so called TRS). We prove that a TRS gives rise to several natural topologies defined in terms 
of the given TRS structure. Mainly, we consider directed topologies and scott topologies on TRS and their interactions 
with the continuity property of TRS. Most of our results are generalizations of corresponding results in references as 
we will illustrate. Sometimes we need pre-ordered sets instead of TRS.

Keywords: Poset; Transitive binary relational sets; Directed topolo-
gies; Scott topologies; Pre-ordered sets
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Introduction
In domain and poset [1-3], Scott-topologies were defined. Abramsky 

and Jung [4] introduced the concepts of continuous directed complete 
posets (continuous domain) and algebraic domains. Heckmam [1] 
studied these conceptes by more details and explained a interactions 
between Scott-topology and these notions. Also, add the concepts 
of bounded complete posets, bounded complete domains, finitely 
complete posets, finitely complete domains, finitarily complete posets 
[5-8]. Hoffmann and Lawson [8-10] gives the concepts of continuous 
posets. And in more general fashion by Markowsky [11] and Eme [12]. 
Nino-Salcedo [3], add by deep studies the concept of algebric posets. 
We note that the concept of continuous posets (resp., algebraic posets) 
in the sense of Nino-Salcedo and continuous domain (resp., algebraic 
domain) of R are the same. Zhang [13] studied a type of continuous 
poset which a generalizations of the continuous poset in the sense of 
Nino-Salcedo. and add some interactions between bounded complete 
domains, Scott topology and Lawson topology. This work is devoted to 
introduce and study the continuity and algebraicness properties of TRS. 
Our results extended the results in posets and in domains [1-3,13]. The 
concepts of upper bound (for short ub), lower bound (for short lb), least 
upper bound (for short), gretest lower bound (for short) in any poset 
are clear also, some concepts in mathematical logics my building some 
times needs these facts [14].

To solve the problem we first introduce the following concepts.

Definition 1.1

Let ′≤′ be a binary relation set on X≠φ. Then;

(1) ′≤′is called reflexive iff ∀xX, x≤x [14];

(2) ′≤′is called antisymetric iff ∀x,y∈X, x≤y and y≤xx=y [14];

(3) ′≤′is called transitive iff ∀x,y,z∈X, x≤y and y≤zx=z [14];

(4) ′≤′is called symetric iff ∀x,y∈X, x≤y ⇒ y≤x [14];

(5) ′≤′is called interpolative iff ∀x,z∈X, with xz, ∃ yX s.t. xy≤z [1,15].

(6) if ′≤′satisfies the conditions (1), (2) and (3), then (X, ≤) is called 
Partialy order set (Poset) [14];

(7) if ′≤′satisfies the conditions (1), and (3), then (X, ≤) is called pre-

orderd set (Quasi set) [14];

(8) if ′≤′satisfies the conditions (1), (2), (3) and (4), then (X, ≤) is 
called an equvalence set,

(9) if ′≤′satisfies the conditions (3) and (5), then (X, ≤) is a 
Continuous information system [15,16].

(10) if ′≤′satisfies the conditions (3), and ∀x∈X, and for every finite 
subsetA of X the following axiom holds: if ∀yA, y≤x then ∃ zX s.t. ∀yA, 
y≤z and zx, then (X, ≤) is abstract basis [17].

Definition 1.2

Let AX. Then:

(1) A is called directed subset of X iff A≠φ and ∀x,y∈A, ∃ zA s.t. xz 
and yz [1];

(2) The lower (resp. upper) closure in X of A is denoted by ↓A 
(resp. ↑A) and defined as follows: ↓A={x∈X:∃yAs.t.x≤y} (resp. 
↑A={x∈X:∃yAs.t.y≤x})[1]

(3) The convex hull A is denoted by  A and defined as follows: 
A=↓A↑A[1];

(4) Let A,B⊆X.B is called cofinal in A iff BA⊆↓(B) [1].

Definition 1.3

Let AX. Then:

(1) A subset A of the domain [1] (resp. Poset) X is called directed 
closed (d-closed for short) iff ∀ directed subset D of A,(D)∈A;

(2) A subset A of the Poset X is called Scott-closed iff A is d-closed 
lower subset of X [3];
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(3) A is called d-(resp. Scott-) open iff Ac d-(resp. Scott-) closed [1,3];

(4) Let x,y∈X. We say x below (resp.y is way above) y (resp. x), 
denoted by x<<y iff ∀D⊆X, s.t.D is directed subset of X with D exists 
and y≤D, ∃dD s.t. xd. The family of all elements in X each of which 
way above (resp. way below) x is denoted and defined as follows: 
⇑x={y∈X:x<<y}(resp. ⇓x={y∈X:y<<x}[3];

(5) Let x∈X. If x<<x, then x is said to be isolated. The family of 
all isolated points above (resp. below) x∈X is denoted and defined by: 
↑°x={y∈X:y<<y and x≤y} resp. ↓° x={yX:y<<y and yx}[3].

Proposition 1.1: (Proposition 3.5.2 [1]). Let X. be a domain, we 
have:

(1) X and φ are d-closed;

(2) The intersection of a family of d-closed sets is d-closed; and

(3)The union of two of d-closed sets is d-closed. Then the family of 
all d-open sets in a domain X is a topology on X.

Proposition 1.2: (Proposition 3.6.2 [1]) Let X. be a poset, we have:

(1) X and φ are Scott-closed;

(2) Arbitrary intersection of Scott-closed sets is Scott-closed; and

(3) Finite union of two of Scott-closed sets is Scott-closed. Then the 
family of all Scott-open sets in a poset X is a topology on X. Furthermore 
it is T°-topology.

Proposition 1.3: (Proposition 3.5.3(3) [1]) In a domain (X,≤). Let F 
be a finite set X. Then ↓F is d-closed subset.

Definition 1.4

For any poset X consider the following topologies:

(1) { }= : is opend A X A dδ ⊆ −  is a topology on X (see proposition 
3.5.2 [1]) in the case of X is a domain) and is called the directed 
topology) (d-topology for short);

(2) { }= : isanuppersubsetA x A X Aδ ⊆  is a topology on X ([1]) in 
the case of X is a domain) and is called the Alexandroff topology) (Alex-
topology for short);

(3) { }= : isScott opensubsetS A X Aδ ⊆  is a topology on X [1-3] 
and is called the Scott- topology);

(4) The upper topology on X is denoted by δU and is the topology 
generated by subbasis { }:X x x X− ↓ ∈ [2];

(5) TheLower topology on X is denoted by δL and is the topology 
generated by subbasis { }:X x x X− ↑ ∈ [2];

(6) The interval topology δI on X is the supremum of δU and δL i.e., 
δI =δU L [2];

(7) The Lowson topology δLS on X is the supremum of δS and δL i.e., 
LS =δL δS [2].

(8) Let (X,δ) be a topological space, and let A⊆X, 
then the closure of λ denoted by clδ() defined as follows 

{ }( ) = : is closed and .∩ ⊆ − ⊆cl F X F Fδ λ δ λ  [14].

Theorem 1.1: (Remark 1.4 (ii) [7]). Let X  be a complete lattice. 
Then, , . ({ }).

S
x X x cl xδ∀ ∈ ↓ ∈

Proposition 1.4: (Theorem 6.1.2 [1]). A point x is an isolated iff the 
upper cone ↑x is Scott-open.

Proposition 1.5: (Proposition 6.7.7 [1]). Let (X,≤) be a continuous 
domin. Then ∀x∈X, the set ⇑x is Scott-open.

Proposition 1.6: (Proposition 6.7.8 [1]). In a continuous domain X, 
x<<y holds iff there is a Scott-open set . . .s t y x∈ ⊆ ↑ 

Theorem 1.2: (Theorem 6.7.9 [1]). A domain (X, ≤) is continuous 
iff it has the local upper cone property: forevery x∈X, and for every 

, . . , '
S s t xδ∈ ∈ ∃  

 and . ., .' ' 'x X s t x x∈ ∈ ⊆ ↑ ⊆ 

Definition 1.5

A space X is called a T°-space iff for two distinct points x,y∈X, 
∃λ⊆X s.t. either xλ,y∈X−λ or yλ,x∈X−λ [14].

Definition 1.6

Let (X,≤1) and (X,≤2) be TRS and let f:(X,≤1)→(Y,2) be a function 
[2]. Then:

(1) f is monotone iff 2( ) ( ),f fλ µ≤  whenever λ≤1,

(2) f is called Scott-continuous iff 
1( ) , ( ) ( ) ,S Y S XG f Gδ δ−∀ ∈ ∈  

where (δS)Y (resp. (δS)X) is the Scott-topology on Y induced by ≤2(resp. 
on X induced by ≤1).

Definition 1.7

Let (X,≤1) and (X,≤2) be TRS and let : ( ) ) ( ) )→,( ,(X YA x A xf X Yδ δ  
is called Alexandroff-continuous iff f is monotone, )( XA xδ  (resp., 

)( YA xδ ) is the Alexandroff-topology on X (resp., on Y) induced by 
≤1(resp. ≤2).

Directed∗-Open, Scott∗-Open Sets and Transitive Binary 
Relational Sets

Definition 2.1

Atransitive binary relational set (TRS for short) is a pair (X,≤)
cwhere Xφ and ′≤′is a transitive binary relation set.

Example 2.1: Partialy order set, pre-orderd set, continuous 
information system, equivalence set and abstract basis is TRS.

Remark 2.1: Abstract basis ⇒ Continuous information system, the 
converse is not true, so give the following example

Example 2.2: LetX={x,y,z} and let = {( , ), ( , ), ( , ), ( , )},x x y y x z y z≤  
because

. ., ;
. ., ,
. ., , and
. ., ,

≤ ⇒ ∃ ∈ ≤ ≤
≤ ⇒ ∃ ∈ ≤ ≤
≤ ⇒ ∃ ∈ ≤ ≤
≤ ⇒ ∃ ∈ ≤ ≤

x x x X s t x x x
y y y X s t y y y
x z x X s t x x z
y z y X s t y y z

then ≤ transitive and interpolative. Now, Let λ={x,y}. Then x ≤ z and 
y ≤ z, but , .a X a z∀ ∈   Hence (X,≤)i s not abstract basis.

Definition 2.2

Let (X,≤) be a TRS. Then:

(1) D is called directed subset of X iff D≠φ and for every distinct 
points ( ) , ({ , });x y D z D ub x y≠ ∈ ∃ ∈ ∩

(2) D is called S-directed subset of X iff D is a directed subset and 
, ({ }) .x D x D φ∀ ∈ ∩ ≠

Remark 2.2: S-directed subset⇒ directed subset, the converse is 
not true, so give the following example.
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Example 2.3: Let ≤ be TRS on = { , , , ,X x y z l m}  define by x≤y. 
Then {x} is directed subset but not S-directed subset.

Definition 2.3

Let (X,≤) be a TRS. Then:

(1) A subset λ of X is called d∗-closed iff for every S-directed subset 
D of λ,

(D)⊆λ and ∀xλ, ({x})⊆λ,

(2) A subset λ of X is called Scott∗-closed iff λ is d-closed lower 
subset,

(3) A subset λ of X is called d-open (resp. Scott-open) iff λc is d-
closed (resp. Scott-closed).

Theorem 2.1: Let (X,≤) be a TRS. Then:

(1) A subset µ of X is called d-open iff for every S-directed subset D 
of , . . ( ) ,X s t D µ φ∩ ≠

and , ({ }) , ,x X x xµ φ µ∀ ∈ ∩ ≠ ∉  and

(2) A subset µ of X is called Scott∗-open iff µ is d∗-open upper subset.

Proof: (1) The proof is obtained logically as follows:

Let ES be the set of all S-directed subset of X.And Let 'P D≡  is 
S-directed subset ;' ' '

SD E≡ ∈

;
( ) ;

;
;

({ }) .

' '

' '

' '

' '

' '

Q D
R D
L x X
S x

H x

λ
λ

λ
λ

≡ ⊆
≡ ⊆
≡ ∈
≡ ∈

≡ ⊆

Now, λ is d∗-closed 
( ) ( ) ( ) ( ) cP Q R L S H P R Q L H S λ≡ ∧ ⇒ ∧ ∧ ⇒ ≡ ∧ ¬ ⇒ ¬ ∧ ∧ ¬ ⇒ ¬ ≡  

is d∗-open. Then λc is d∗-open 

( )( ) (( ) ) ( ) ( ) (({ }) ) .c c c c
SD E D D x X x xλ φ λ φ λ φ λ≡ ∈ ∧ ∩ ≠ ⇒ ∩ ≠ ∧ ∈ ∧ ∩ ≠ ⇒ ∉  

Then µ is d-open iff . .( ) ;SD E s t D µ φ∀ ∈ ∩ ≠  and 
, ({ }) , .x X x xµ φ µ∀ ∈ ∩ ≠ ∉

(2) By the same fashion

Theorem 2.2: Let (X,≤) be a TRS. If λ is d-closed (resp. d-open) 
subset of X then λ is d∗-closed (resp. d∗-open).

Proof: Only prove the stament. Let D be an S-directed subset of λ. 
So since λ is d-closed, then (D)⊆λ. Also, ∀x∈λ{x}, directed subset of λ 
so that ({x}⊆λ. Hence λ is d-closed.

Corollarly 2.1: From Theorem 2.1. Let (X,≤) be a TRS. If λ is Scott-
closed (resp. Scott-open) subset of X, then λ is Scott∗-closed (resp. 
Scott∗-open).

Open problem if λ is d∗-open subset of a TRS, then λ is d-open.

Theorem 2.3: Let (X,≤) be a pre-orderd set and λ⊆X. Then:

(1) λ of X is directed subset iff λ is an S -directed subset of X;

(2) λ is d-open (resp. d-closed, Scott-closed, Scott-open) subset of X 
iff λ is d∗-open (rep. d∗-closed, Scott∗-closed, Scott∗-open).

Proposition 2.1: Let λ,µ∈X. If µ directed subset and cofinal in λ, 
then λ is directed subset and (λ)=().

Proof: First, we prove that λ is direct subset. Since ⊆λ, then 
λ≠φ. Let l,m∈λ s.t. l≠m. Then 

1 2 1 2, . . ,b b s t l b m bµ∃ ∈ ≤ ≤  

and   ({ , }).b ub l mλ∃ ∈ ∩  Hence λ is directed subset. 
Scound, one can deduce that ( ) ( ).ub ubµ λ⊆  Conversely,

( ) . .  ( ) . .y ub a s t a y a b s t a bλ λ µ µ∉ ⇒ ∃ ∈ ⇒ ∃ ∈↓ ⇒ ∃ ∈ ≤  

and . . ( ).a y b s t b y y ubµ µ⇒ ∃ ∈ ⇒ ∉   Hence ( ) ( ).ub ubµ λ⊆  
Thus (λ)=().

The following theorem is a generalization of the corresponding 
result in Proposition 1.1 (Proposition 3.5.2 [1]).

Theorem 2.4: Let (X,≤) be a TRS. If , ({ }) ,x X x φ∀ ∈ ≠  then 

{ }= : is open
d

X dδ λ λ ∗
∗ ⊆ −  is a topology on X (called directed∗-

topology on X).

Proof: (1) Clearly X and φ are d∗-closed sets. So X and φ are d∗-open 
sets;

(2) Let λ and µ be d∗-open sets. Then λc and µc be X be d∗-closed 
sets. Let D be an S-directed subset of λc ∪µc. Thus D =(D∩λc) or (Dµc). 
We need to prove that either (D∩λc) or (Dµc) is cofinal in D. Suppose 
Dλc is not cofinal in D, then . . , .cd D s t a D d aλ∃ ∈ ∀ ∈ ∩

 

  
If d°∈λc, then ({d°})⊆λc. Thus , . . .cm D d a s t d mλ∃ ∈ ∩ ≤

 

  
Acontraduction. Hence d°∈µc. Let . . .d D s t d d∈ ≠



 Then 
({ , }).'d D ub d d∃ ∈ ∩



 If dλc, then d° ≤ d′ which leads to a 
contaduction. So, , . ., .' c cd i e D Dµ µ∈ ⊆ ↓ ∩  Hence Dµc is cofinal in 
D. Now we prove that Dµc is directed. Let 1 2 1 2, . . .cb b D s t b bµ∈ ∩ ≠  
Thus 1 2({ , }).d D ub b b∃ ∈ ∩  Thus . . .ck D s t d kµ∃ ∈ ∩ ≤  So, 

1 2( ) ({ , }).ck D ub b bµ∈ ∩ ∩  Hence D∩µc is directed. From Proposition 
2.1. (D)=(D∩µc). Now D∩µc is S-directed (Indeed, let l∈ D∩µc. Since 
D is S-directed, ({ }) . . .m l s t m D∃ ∈ ∈  Also, since µc is d-closed, then 
({l})⊆µc. Thus , . .,( ) ({ }) .c cm D i e D lµ µ φ∈ ∩ ∩ ∩ ≠  Hence Dµc is 
directed). Then ( ) = ( ) .c c c cD D µ µ µ λ∩ ⊆ ⊆ ∩  Also, if x∈µcλc, 
then ({x})⊆µcλc. So µc∪λc is d∗-closed so that λ∩µ is d-open, and (3) 
Let{λi : i∈I} be a family of d∗-open subsets of X. Then { }:c

i i Iλ ∈  is a 
family of d-closed subsets of X. Let D be an S-directed subset of .c

i I iλ∈  
So, .c

iD i Iλ⊆ ∀ ∈  Then ( ) = .c
iD i Iλ ∀ ∈  So that ( ) = .c

i I iD λ∈  

Let ,c
i I il λ∈∈  then ({ }) = .c

il i Iλ ∀ ∈  Thus ({ }) = .c
il i Iλ ∀ ∈  So that 

({ }) = .c
i I il λ∈  Then 

c
i I iλ∈  is d-closed. Hence i I iλ∈  is d-open.

Proposition 2.2: (1) X andφ areLower (resp. upper) subsets; and

(2) If { }:i i Iλ ∈  be a family of Lower (resp. upper) subsets of X, 

then i I iλ∈  and i I iλ∈  are Lower (resp. upper) subsets.

Theorem 2.5: Let (X,≤) be a TRS. If , ({ }) ,x X x φ∀ ∈ ≠  then 
{ }= : is Scott open

S
Xδ λ λ ∗

∗ ⊆ −  is a topology on X (called Scott∗-
topology on X).

Proof: Follow from Proposition 2.2. and Theorem 2.4.

Remark 2.2: Each pre-orderd set is a TRS satisfies ∀xX,({x})≠φ. the 
converse is not true, so give the following example.

Example 2.4: Let ≤ be a binary relation on X={x,y,z} define by x≤z, 
y≤z and z≤z. Then (X,≤) is TRS and ∀x∈X,({x})={z}≠φ. But (X,≤) is not 
pre-orderd set because ≤ is not reflexive.

Theorem 2.6: Let (X,≤) be a TRS and let x∈X. Then ↓x is Scott-closed.

Proof: (1) Let y↓ (↓x). then ∃z↓x s.t. y≤z so that y∈↓x. Hence ↓x is 
a lower subset of X.
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(2) Let D be a directed subsets of ↓x and let m∈(D). Now x∈ub(D) 
and thus m≤x i.e., m∈↓x. Then (D)⊆↓x. Hence ↓x is d-closed. From (1) 
and (2) we have ↓x is Scott-closed.

Corollarly 2.2: Let (X,≤) be a TRS . . , ({ }) .s t x X x φ∀ ∈ ≠  Then 
, .Sx X X x δ∀ ∈ − ↓ ∈

Theorem 2.7: Let (X,≤) be pre-orderd set. Then = ({ }).
S

x cl xδ↓

Proof: From Corollarly 2.2. .SX x δ− ↓ ∈  Since x≤x, ,x x≤

then { } { }({ }) = : is closedand { } : is closedand{ }S SS
cl x F X F x F x F X F x Fδ δ δ⊆ − ⊆ ⊆ ↓ ⊆ ↓ ⊆ − ⊆

{ }= : is closedand{ } = ({ }).S S
F X F x F cl xδδ⊆ − ⊆

The following theorem is a generalization of the corresponding 
result in Proposition 1.3 (Proposition 3.5.3(3) [1]).

Theorem 2.8: Let F be a finite set in pre-orderd set (X,≤). Then 
.SX F δ− ↓ ∈

Proof: Since { }. . : .z F x F s t z x z x x F∈↓ ⇔ ∃ ∈ ≤ ⇔ ∈ ↓ ∈  

Then On can deduce { }= : .F x x F↓ ↓ ∈  From Theorem 2.7. 
,x X x∀ ∈ ↓  is Scott-closed. Since the union of finitaly number of 

d-closed is Scott-closed subset, then ↓F is Scott-closed subset so that 

− ↓ ∈ SX F δ .

Definition 2.4

Let (X,≤)be a TRS. and let (X,δ) be a topological space,Then (X,≤,δ) 
is called a topological TRS.

Definition 2.5

Let (X,≤,δ) is called a topological TRS. The topological space (X,δ)
is called transitive- T°(TRS−T for short) iff , , . .x y X s t∀ ∈  either xy or 

, . . ,y x u s t x u y uδ∃ ∈ ∈ ∉  or , .y u x u∈ ∉

Lemma 2.1: Let (X,≤) be a TRS. and let δ be a topology on X, Then 
(X,δ) is TRS −T° iff , , . .x y X s t x y∀ ∈   or yx, either ({ })x cl yδ∈  or 

({ }).y cl xδ∈

Proposition 2.3: Let (X,≤) be a TRS. and let δ be a topology on X, 
Then:

(1) If ≤ is antisymmetric and (X,δ) is TRS −T° then (X,δ) is T

(2) If ≤ is reflexive and (X,) is T° then (X,δ) is TRS −T.

The following theorem is a generalization of the corresponding 
result in Theorem 1.1 (Remark 1.4 (ii) [7]).

Theorem 2.9: Let (X,≤) be pre-orderd set, then (X,δS) is TRS −T°.

Proof: , , . .x y X s t∀ ∈  either xy or yx, Then x↓y or y↓x. From 
Theorem 2.7, ({ })

S
x cl yδ∈  or ({ }).

S
y cl xδ∈  Hence from Lemma 2.1, 

(X,δS) is TRS −T.

Theorem 2.10: Let (X,≤) be pre-orderd set. Then a specialization 
pre-ordered relation 

Sδ  induced by δS≤.

Proof: ({ }) = .
S S

x y x cl y y x yδ δ⇔ ∈ ↓ ⇔ ≤

Interactions between a Continuous TRS and Its Scott∗-
Topology

The following theorem is a generalization of the corresponding 
result in Proposition 1.4 (Theorem 6.1.2 [1]).

Theorem 3.1: (1) Let (X,)be a TRS and xX is an isolated point, then 

↑x is Scott-open,

(2) Let (X,≤)be a TRS and for some x∈X, ↑x is d-open subset of X, 
then x is an isolated point.

Proof: (1) Let D be a directed subset of X and assume that 
( ) .D x φ∩ ↑ ≠  Thus . .y X s t y x∃ ∈ ∈↑  and y(D). Then x∈↓(D). 
Since x<<x, then . . .d D s t d x∃ ∈ ∈↑  Hence .D x φ∩ ↑ ≠  Then ↑x is 
d-open. Since ↑x is upper subset, then ↑x is Scott-open.

(2) Let D be a directed subset of X and x↓(D). Then 
( ) . .m D s t x m∃ ∈ ≤  so that ( ) .m D x∈ ∩ ↑  Since ↑x is d-open, then 

, . ., . . .D x i e d D s t x dφ∩ ↑ ≠ ∃ ∈ ≤

Hence x<<x.

Corollarly 3.1: (1) Let (X,) be a TRS . . , ({ }) .s t x X x φ∀ ∈ ≠  if x∈X 
is an isolated point, then ↑x∈δS; and

(2) If(X,≤)is a pre-orderd set and for some x∈X, ↑xδS (moreover d) 
then is an isolated point.

Proposition 3.1: Let (X,≤) be a TRS. Let x,y,z∈X. Then:

(1) If x≤y and y<<z, then x<<z;

(2) If x<<y and y≤z, then x<<z;

(3) If ({y})φ and x<<y, then xy;

(4) If({y})φ or({z})≠φ, x<<y and y<<z then x<<z.

Proof: (1) Let D be a directed subset of X s.t. z↓(D). Then ∃dD 
s.t.yd. Then xd and hence x<<z.

(2) Let D be a directed subset of X s.t. z↓(D). Then ( ) . . .k D s t z k∃ ∈ ≤  
Thus yk and so y∈↓(D). Therefore . . .l D s t x l∃ ∈ ≤  hence x<<z.

(3) Let D={y} and assume that x<<y. Then . .d D s t x d∃ ∈ ≤  but y=d 
Thus x≤y.

(4) The proof follow directly from (1) and (3) above.

The following theorem is a generalization of the corresponding 
result in Proposition 1.5 (Proposition 6.7.7 [1]).

Theorem 3.2: Let (X,≤) be a TRS. If ‘<< ‘ is interpolative, then 
,x X x∀ ∈ ⇑  is Scott-open.

Proof: First let z↑(⇑x). Then ∃yx s.t. yz. From Proposition 3.1.(2) 
z∈⇑x. Hence ⇑x is upper subset of X. Second Let, D be a directed 
subset of X with ( ) .x D φ⇑ ∩ ↓ ≠  Then . . ( ) (z X s t z D∃ ≤ ∈↓  because 
for each element ( ), )z D z z∈ ≤  and z∈⇑x. So, . .y X s t x y z∃ ∈    
and so that . . .d D s t y d∃ ∈ ≤  From Proposition 3.1.(2) d⇑x. Hence 

.D x φ∩ ⇑ ≠

Definition 3.1

(X,≤)is a continuous TRS iff ∀xX, the following conditions are 
satisfied:

(1) ({x})≠φ

(2) ⇓x be a directed subset of X, and

(3) x∈↓(({(⇓a):a∈⇓x})).

Corollarly 3.2: If (X,≤) is a continuous TRS, then ∀x∈X, ⇑xδS.

Theorem 3.3: Let (X,≤) be a pre-orderd set and let x,yX. If ∃ (open 
set) in δS s.t. y∈⊆↑x, then x<<y.

Proof: Let D be a directed subset of X s.t y∈↓(D). Then ∃m(D)



Citation: Khalaf MM (2017) Directed*-topology and Scott*-topology on Transitive Binary Relational Sets. J Generalized Lie Theory Appl 11: 284. doi: 
10.4172/1736-4337.1000284

Page 5 of 6

Volume 11 • Issue 3 • 1000284J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

s.t. y≤m. Since y∈↑y↑⊆, then ( ) . . . ( ) .m D i e D φ∈ ∩ ∩ ≠   Then 
. . , . . .d D s t d x i e x d∃ ∈ ∈ ⊆ ↑ ≤  Hence x<<y.

The following theorem is a generalization of the corresponding 
result in Proposition 1.6 (Proposition 6.7.8 [1]).

Theorem 3.4: Let (X,≤) be a TRS. s.t.∀zX, ({z})≠φ and assume that 
‘<<’ is interpolative. If , , . . ,x y X s t x y∀ ∈   then ∃ a Scott-open 
subset  of . . .X s t y x∈ ⊆ ↑

Proof: From Theorem 3.2. ⇑x is Scott-open. Let y∈⇑x i.e. x<<y. 
From Proposition 3.1.(3), y∈⇑x. Hence y∈⇑x↑x.

Theorem 3.5: Let (X,≤) be a continuous pre-orderd set. Then 
∀x∈X, and ∀∈δS with z∈ for some ( ), '

Sz x z δ∈ ⇓ ∈ ∈  and 
. . .' ' 'x X s t y x∈ ∈ ⊆ ↑ ⊆ 

Proof: Let ∀xX and let ∈δS with z∈for some z(⇓x). Then 
(⇓x)∩≠φ. Thus 'x x∃ ∈⇓ ∩  so that .'x↑ ⊆ ↑ ⊆   From Theorem 
3.4. and since , . . .' ' ' '

Sx x s t x xδ⊆ ∃ ∈ ∈ ⊆ ↑ ⊆ ↑ ⊆   

Theorem 3.6: Let (X,≤) be domain pre-orderd set. If ∀x∈X, and 
, '

S Sδ δ∀ ∈ ∃ ∈ 

 and . . ,' ' 'x X s t x x∃ ∈ ∈ ⊆ ↑ ⊆   then ∃ a 
directed subsets D of . . ( ).x s t x D⇓ ∈↓

Proof: Let = { : u SD u X δ∈ ∃ ∈  with }.ux u∈ ⊆ ↑  From 
Theorem 3.3, D⊆⇓x. Since X iteslf is Scott-open and xX, then there 
are y∈X and . . .y S ys t x yδ∈ ∈ ⊆ ↑ 

 Then Dφ. Let u,v∈D s.t.uv. 
Then, there , . .u v S us t x uδ∃ ∈ ∈ ⊆ ↑    and .vx v Si∈ ⊆ ↑  Since 

,u vx ∈ ∩   there ∃wX and wδS . . .∈ ⊆ ↑ ⊆ ∩w u vs t x w    Then 
wD and w↑u∩↑v. So u≤w and v≤w. Then D is directed subsets of ⇓x. 
Now there are y∈X and . . .y S ys t x yδ∈ ∈ ⊆ ↑ ⊆  

 Thus yD∩. 
Let m∈(D), then ym. Since  is upper subset, then m. Now .

S
x mδ  

From Theorem 2.11, xm. Hence x↓(D).

The following theorem is a generalization of the corresponding 
result in Theorem 1.2 (Theorem 6.7.9 [1]).

Theorem 3.7: Let (X,≤) be domain pre-orderd set. Assume that If 
∀xX, and , ( ) .S z xδ∀ ∈ ∃ ∈ ⇓ ∩ 

 Then the following statments are 
equivalent:

(1) (X,≤) be a continuous TRS, and

(2) (a) ‘<<’ is interpolative,

(b) ∀xX, ∀∈δS with x∈ there are ′∈δS and x∈X s.t. 
x∈′⊆↑x′⊆.

Proof: Applying Theorem 3.4, Theorem 3.5, Theorem 3.6. the 
results holds.

An Application on Topological Spaces
From Theorem 2.6, one can assign for any topology δ, a new 

topology S(δ) where S(δ) is Scott-topology induced by the specialization 
pre-ordered relation δ  induced by δ.

Theorem 4.1: Let (X,δ) be a topological space Then:

(1) (X,S(δ)) be a topological space is TRS−T.w.r.t, the pre-ordered 
relation δ ; and

(2) If (X,δ) is T°-space, then (X,S(δ)) so is.

Proof: (1) The result is a corollary from Theorem 2.9.

(2) From Proposition 4.3.3 [1], if (X,δ) is T°-space, then ≤δ is a 

partially ordered relation. So, from Theorem 2.9. and proposition 2.3. 
one can have the (X,S(δ)) is T°-space.

Theorem 4.2: Let (X,≤)be a pre-orderd set. Then S(S)=S.

Proof: The result follows from Theorem 2.10.

More Topologies on TRS and More on Functions 
between TRS

Proposition 5.1: (page 10 [2]). In (X,), let d∈X. Then:

(1) ↓d is a principle ideal; and

(2) ↑d is a principle filter.

Definition 5.1

Let (X,≤)be a TRS. ∀∈X, ({x})≠φ. Define topologies:

(1) { }= : is anuppersubset⊆x Xλδ λ λ (see Proposition 5.1.) is a 
topology on X called the Alexandroff topology;

(2) The upper topology on X is induced by δα and is the topology 
generated by subbasis { }: ;X x x X− ↓ ∈

(3) The lower topology on X is denoted by δβ and is the topology 
generated by subbasis { }: ;X x x X− ↑ ∈

(4) The interval topology δχ on X is the supremum of δα and δβ, i.e 
δχ =δα β;

(5) The Lowson topology δβS on X is the supremum of δβ and δS, i.e 
δβS =β δS.

Definition 5.2

Let (X,≤1)and (X,≤2) be TRS and let λ,µ∈X and let f:(X,≤1)→(Y,2) 
be a function. Then f is monotone iff f(λ)≤2f(µ), whenever λ≤1, and µ≤1

Lemma 5.1: If (X,≤1) and (X,≤2) be are pre-order sets then the 
function f:(X,≤1)→(Y,2) is TRS monotone iff it is monotone.

Proof: Obvious.

Theorem 5.1: Let (X,≤) be pre-orderd set. Then the following 
statments are hold:

(1) (2) (3)

(4) (5) (6)
(7) (8) = (9)

(10) (11) .

≤ ≤ ≤

≤ ≤ ≤

≤ ∩ ≤

≤ ≤

S S S dx

S S S

S d x x

d S

α λ

β β β α χ

β χ αλ λ

α α β

δ δ δ δ δ δ

δ δ δ δ δ δ

δ δ δ δ δ δ δ

δ δ δ δ

In the following Theorem we give a characterization of Alexandroff-
continuous between TRS.

Theorem 5.2: Let (X,≤1) and (X,≤2) be TRS and let f:(X,≤1)→(X,2) be 
a function. Then f is Alexandroff-continuous iff f is monotone.

Proof: (⇒) Let λ,µ∈X s.t.λ≤1. Since ↓ f(µ) is a lower set in Y, then 
f 1(↓f(µ)) is a lower set in X. From the fact µ∈f1(↓f(µ)) one can have that 
λ∈f1(↓f(µ)). Then f(λ)≤2f(µ).

(⇐) Let F be a lower set in Y, i.e., an Alexandroff-closed in Y. We 
need to prove that f1(F) is a lower set in X. Let λ∈↓f−1(F). Then ∃µ∈f1(F) 
s.t., λ≤1. So, f()≤2f(µ). Since F be a lower set, then f(λ)∈F, i.e., λ∈f1(F). 
Hence f−1(F) is Alexandroff-closed subset in X.

Lemma 5.1: Let (X,≤1) and (Y,≤2) be TRS and let f:(X,≤1)→(X,2) be 
a function and let
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(1) If f is Scott∗-continuous, then f is TRS−monotone, and

(2) If for any direcrted subset D of X s.t.XsupX(D)≠φ, f(X(D))=Y(f(D)), 
then f is TRS−monotone.

Proof: (1) Let λ,µ∈X s.t. λ≤1µ. and µ≤1. From Theorem 2.6. ↓f(µ) 
is Scott∗ -closed so that f−1(↓f(µ)) is a lower set in X. It is dear that µ∈ 
f−1(↓f(µ)). Then λ∈f1(↓f(µ)) so that f(λ)≤2f(µ).

(2) Let λ,µ∈X s.t.λ≤1 and µ≤1. Then D={,µ} is direcrted subset of 
X and µ∈X(D). So f(µ)∈f(X(D))=X(f(D)). Thus f(µ)≥2f(λ). Hence f is 
TRS−monotone.

From Lemma 5.1 one can have the following Corollary.

Corollary 5.1: Let (X,≤1) and (X,≤2) be are pre-order sets and let 
f:(X,≤1)→(Y,≤2)be the function. Then:

(1) If f is Scott∗-continuous, then f is monotone, and

(2) If for any direcrted subset D of X . . ( ) , ( ( )) = ( ( )),supX X YXs t D f D f Dµ φ∈ ≠  
then f is monotone.

Lemma 5.2: Let (X,≤1) and (X,≤2) be TRS and let f:(X,≤1)→(Y,2) be 
a monotone function. If D is directed subset of X, then f(D) is a directed 
subset of Y

Proof: Let 1 2, ( )f Dλ λ ∈  1 2. .s t λ λ≠  then ∃ 1 2 1 2, . . . ,D s tµ µ µ µ∈ ≠  
and f(b1)=a1 and f(µ1)=λ1. Since D is directed, then 1 1. . . ,c D s t c µ∈ ≥  
and c≥12. So, f(c)∈f(D) s.t. 2( )f c ≥  1 1( ) =f µ λ∈  and 2( )f c ≥  2 2( ) =f µ λ . 
Then f(D) is a directed subset of Y.
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