Research Article Open Access # Discrimination of the Geographical Origin of *Sclerocarya birrea* by ¹HNMR and LC-MS Based Metabolite Profiling Kwena MC1*, Jacquees V1,2 and Gerhard P1 ¹Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa ²Laboratory of Biochemistry, Wageningen University, 6708 PB Wageningen, the Netherlands #### **Abstract** Sclerocarya birrea (S. birrea) is an African tree used traditionally to treat various human ailments. The origin of S. birrea can be determined by its biochemical composition. This study identifies the biochemical composition of S. birrea leaf extracts from 5 provinces within South Africa namely Limpopo, KwaZulu-Natal, North-West, Gauteng and Mpumalanga by both ¹H Nuclear Magnetic Resonance (NMR) and Liquid Chromatography Mass Spectroscopy (LC-MS), followed by multivariate data analysis. The Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) and Partial Least Squares Discriminant Analysis (PLS-DA) from ¹HNMR and LC-MS respectively, clearly discriminated between extracts from five provinces. Putatively annotated metabolites including kaempferol, quercetin, gallic acid, sucrose and glutamate contributed to discriminating the geographical origin of S. birrea extracts. These results established biochemical profiles of S. birrea extracts and indicate that the two techniques; NMR and LC-MS can be used in the discrimination of the geographical origin of S. birrea. **Keywords:** Geographical origin; *Sclerocarya birrea*; Multivariate data analysis; ¹HNMR; LC-MS #### Introduction Sclerocarya birrea is distributed from Senegal to Ethiopia and South Africa and is also found in Madagascar [1]. The stem bark, roots and leaves of *S. birrea* has been used for decades as a traditional medicine as anti-bacterial [2], anti-proliferative [3] and anti-diabetes [4]. The geographical origin of *S. birrea* trees can be determined by its biochemical composition. Therefore, it is possible to measure the metabolite content of a plant in order to determine how it differs with others from different origins. Metabolic profiles have become important in several plant science areas; in particular, metabolomics combined with a multivariate statistical approach has proven valuable in many chemical analyses of plant studies [5]. Liquid Chromatography-Mass Spectroscopy (LC-MS) and Nuclear Magnetic Resonance (NMR) are frequently used as a technological platform for metabolomics applications [6]. These analytical methods provide information about the chemical composition of biological samples. In plant metabolomics these two technologies are commonly used as independent approaches for profiling plant systems [7-10]. The two techniques are distinct concerning their detection ability and sensitivity [10]. Liquid Chromatography Mass Spectroscopy is highly sensitive and enables extensive detection of metabolites within a sample. Although a reference database search is essential for the structural assignment processes of untargeted LC-MS data [11], the results allows the comprehensive metabolite annotation without dependence of standard compounds or even isolation of individual metabolites [8]. On the other hand NMR is a highly selective technique distinguishing molecular structures but has the lowest sensitivity compared to MS [12]. The statistical combination of the data from NMR and LC-MS offers an opportunity to relate spectrometric and spectroscopic properties for a single metabolite [10]. Although both NMR and LC-MS have been used previously to profile metabolites from plants [10,13-15], these two techniques have also been used to identify metabolites present in the leaves of wild and cultivated *S. birrea* trees [16]. In the present study both NMR and LC-MS were used to construct the metabolite profile of metabolites from five geographical origins of *S. birrea*. While NMR based metabolomics approach has been used in many plant studies [17], no metabolomics profiles related to the geographical origin of *S. birrea* have been reported. Among possible analytical techniques, ¹HNMR and LC-MS are well suited to metabolite profiling, because they allows simultaneous detection of a diverse group of secondary metabolites in addition to abundant primary metabolites [18]. Moreover, NMR based metabolomic analysis are reproducible and do not require complex sample preparation procedures [19]. In this study, a metabolomics approach based on ¹HNMR and LC-MS was used to determine the differences in chemical composition in *S. birrea* growing in Limpopo, Gauteng, North West, Mpumalanga and KwaZulu-Natal provinces of South Africa. The study aimed at identifying the different chemical compositions of *S. birrea* extracts depending on geographical origin using ¹HNMR, LC-MS as well as multivariate analysis. # **Materials and Methods** # Study sites and sample collection Leaf samples from 12 *Sclerocarya birrea* trees were collected in October 2013, from each of the five sampling areas Limpopo, Gauteng, North West, Mpumalanga and KwaZulu-Natal. From each province, two regions were identified for collection, and in each region, samples were collected from three different trees with two samples per tree. The two samples from each tree were collected randomly, and from the trees of almost the same height (9.5 m). *Corresponding author: Kwena MC, Department of Agriculture and Animal Health, University of South Africa, Florida, 1710, South Africa, Tel: +27833651714, +27114713022; E-mail: cynthiakwena@yahoo.com Received April 19, 2017; Accepted April 26, 2017; Published April 28, 2017 **Citation:** Kwena MC, Jacquees V, Gerhard P (2017) Discrimination of the Geographical Origin of *Sclerocarya birrea* by ¹HNMR and LC-MS Based Metabolite Profiling. Metabolomics (Los Angel) 7: 192. doi:10.4172/2153-0769.1000192 **Copyright:** © 2017 Kwena MC, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. #### Extraction of Sclerocarya birrea samples for NMR and LC-MS Methanol (d4) (400 µl) was added to 15 mg of the dried leaf material, and this was vortexed for 1 min and sonicated for 20 min. The mixture was centrifuged at 10,000 rpm for 10 min and the supernatant (200 µl) was transferred into 3-mm NMR tubes. After the NMR analysis, the methanol-d4 S. birrea extracts were diluted to 25% (v/v) ultrapure water. The diluted extracts were sonicated, centrifuged and filtrated before LC-MS analysis. # NMR analysis ¹HNMR spectra were acquired on a bruker 600 MHz spectrometer (Wageningen University, Netherlands) operating at a proton NMR frequency of 600.13 MHz. A PRESAT pulse sequence was applied to suppress the water signal. For each sample, 64 K data points for the FID and 64 data points after Fourier transformation were used, 128 scans were acquired with 60 degrees pulses at an acquisition time of 1.817 s. The spectral width was 18028 Hz with a relaxation delay of 4 s, and 0.2 Hz line broadening was used before Fourier transformation. # Data analysis All NMR spectra were phase- and baseline corrected using MestReNova 10.01 (Mestrelab Research). Normalization was also done with MestReNova to ensure that all the spectra have the uniform norm. The regions containing the water and methanol peaks (4.60-5.00 ppm and 3.28-3.36 ppm) were excluded and the remaining spectral regions were divided into 0.04-ppm bins, converted to ASCII format, and imported to Microsoft Excel 2010. # Multivariate statistical analysis for NMR The resulting Microsoft Excel file was imported to SIMCA version 13.0 (Umetrics) for multivariate data analysis. All imported data were pareto-scaled for multivariate data analysis. Pareto scaling, in which each variable is divided by the square root of the standard deviation, gives greater weight to NMR data variables with higher intensities but is not as extreme as the use of no scaling [20]. Principal Component Analysis (PCA) was initially performed to determine the basic variation, the presence of extreme outliers and to obtain an overview of variation among the groups. The quality of the model was described by R2 and Q2 values. R2 is defined as the proportion of variance in the data explained by the model, and indicates the goodness of and Q2 is defined as the proportion of variance in the data predictable by the model and indicates predictability [21]. #### Untargeted metabolite profiling Quantification of metabolites was achieved by 600 MHz library of Chenomx NMR suite version 8.2 which uses the concentrations of the known reference signals to determine the concentrations of individual compounds. The library contains 338 metabolites. Other metabolites were identified using published literature on compounds isolated from the leaves of *S. birrea*. #### LC-MS analysis The extracts were analysed by reverse phase LC-MS for their metabolite contents. The LC-QTOF MS analysis was carried out in Electronspray (ESI) negative mode. The mass rate and scan rate were set to record m/z 100-1500/s. # Multivariate statistical analysis for LC-MS Quantification of S. birrea metabolite profiles of LC-MS analyses was performed using XCMS online data analysis software, which can be accessed freely from the Scripps Centre for Metabolomics (https://xcmsonline.scripps.edu). This software approach employs peak alignment, matching, and comparison. The raw LC-MS files were first converted to MZxmL files using MS convert. Peaks were subsequently extracted using XCMS. The final statistical analysis where performed by employing MetaboAnalyst 3.0-a comprehensive tool suite for metabolomic data analysis, which also can be accessed freely from http://www.metaboanalyst.ca/MetaboAnalyst. This software employs data normalization, multivariate analysis methods (PCA and PLS-DA), clustering analysis and many more analysis approaches. All the samples were auto scaled prior to the analysis. #### Results # ¹H NMR analysis Figure 1 shows representative one-dimension ¹H NMR spectra of *Sclerocarya birrea* from Limpopo, Gauteng, North West, KwaZulu-Natal and Mpumalanga. No clear visual differences were observed in the overall spectroscopic fingerprint among *S. birrea* samples from five provinces. However, close inspection of the spectra revealed that the chemical compositions of metabolites between *S. birrea* samples obtained from five provinces were distinctly different. Visual inspection of the five spectra also revealed more intense sugar relative to aliphatic and aromatic compounds. Very few metabolites were annotated putatively using 600 MHz library from Chenomx NMR Suite version 8.2 which contains 338 metabolites, together with published literature [16,22] on compounds isolated from plant leaves. Intense signals in the sugar region from Gauteng (Figure 1) were however, clearly observed, indicating the presence of glycosylated metabolites and free sugars. # Metabolomic analysis of *Sclerocarya birrea* extracts from different provinces To provide comparative interpretation and visualization of the fundamental variations and metabolite differences in the samples from different origins, Principal Component Analysis (PCA) and Orthogonal Partial Least square-Discriminant Analysis (OPLS-DA) were applied to the 1H NMR spectrum dataset. The PCA model for distinguishing S. birrea samples obtained from five provinces revealed R2X and Q2 values of 0.85 and 0.78 respectively (Figure 2a). The PCA scores were used to determine whether metabolic fingerprints of S. birrea extracts were sufficiently different to distinguish geographical origin and to identify specific markers of each origin. To improve the clustering and to identify the metabolites responsible for the differences between the provinces, OPLS-DA model was constructed (Figure 2b), and revealed RY2 and Q2 values of 0.73 and 0.62 respectively. The samples from five provinces were clearly separated in the OPLS-DA score plot (Figure 2b), which means that the non-correlated variation in X metabolites to Y metabolites was removed, resulting in maximum separation [23]. This maximum separation also indicates that the levels of S. birrea metabolites were strongly influenced by the various growing conditions in each region [24]. To further understand, the underlying variables contributing to the differentiation, the contribution plots were constructed. Figures 3a-3e shows the metabolites responsible for the separation observed in the OPLS-DA. All provinces showed a unique pattern of compounds important in their composition. KwaZulu-Natal samples were characterized by the higher levels of phenolics; quercetin 3-0- β -D glucopyranoside (bin at 4.19, 4.23, 5.41, 6.17, 6.36, 6.71, 7.42 and 7.57 ppm), gallic acid (bin at 7.04 ppm), quercetin 3-0-β-Dgalactopyranoside (bin at 4.04, 4.08, 5.36, 6.18, 6.39, 6.81, 7.51 and 7.65 ppm), quercetin 3-0-α-L-rhamnopyranoside (bin at 5.24, 6.19, 6,38, 6.85, 7.24 and 7.28 ppm) and threonine (bin at 1.32 ppm) compared to other provinces. Gauteng samples showed no phenolic compounds as metabolites that contributed to it being different to the other provinces, however the sugar; sucrose (bin at 3.44, 3.54, 3.68, 3, 76, 3.78-3.90, 4.04, 4.17 and 5.39 ppm), unknown sugars (bins at 5.12, 5.32 and 5.4 ppm), lactate (bin at 1.32 and 4.04 ppm) and an unknown amino acid (bin at 0.92) appeared to be the important metabolites in this province. In addition to the profile observed in the samples from Gauteng, Limpopo also showed sucrose (bin at 3.44, 3.54, 3.68, 3.76, 3.78-3.90, 4.04, 4.17 and 5.39 ppm) as an important metabolite, fatty acid (bin at 0.88 ppm) was also observed in the samples from this province. Mpumalanga showed a combination of sugars, amino acids, and phenolics as the important metabolites. Higher levels of leucine (bin at 0.96 ppm), unknown sugars (bins at 4.24, 4.88 and 5.32 ppm), gallic acid (bin at 7.04 ppm), quercetin 3-0-β-D glucopyranoside (bin at 4.19, 4.23, 5.41,6.17, 6.36, 6.71, 7.42 and 7.57 ppm), quercetin 3-0- β -D galactopyranoside (bin at 4.04, 4.08, 5.36, 6.18, 6.39, 6.81, 7.51 and 7.65 ppm), kaempferol-3-0- α -L-rhamnopyranoside (bin at 5.43,6.20, 6.38 ppm) and (-)-epigallocatechin 3-0-galloyl ester (bin at 2.92, 3.04, 5.65, 6.03 and 6.06 ppm), where observed as important metabolites in Mpumalanga samples. The profile observed in North West province is almost identical as the one from Mpumalanga. The samples from North-west presented quercetin 3-0- β -D glucopyranoside (bin at 4.19, 4.23, 5.41,6.17, 6.36, 6.71, 7.42 and 7.57 ppm), quercetin 3-0- α -L-rhamnopyranoside (bin at 5.24, 6.19,6,38, 6.85,7.24 and 7.28 ppm), kaempferol-3-0- α -L-rhamnopyranoside (bin at 5.43,6.20, 6.38) and quercetin 3-0- β -D galactopyranoside (bin at 4.04, 4.08, 5.36, 6.18, 6.39, 6.81 7.51 and 7.65 ppm) as important metabolites. The analysis of *S. birrea* leaf extracts from five provinces by ¹H NMR allowed the detection of essentially primary (polar) metabolites such as sugars, amino acids and organic acids and few secondary Figure 3: Contribution plots from OPLS-DA. (a) Mpumalanga vs. other four provinces; (b) KwaZulu-Natal vs. the other four provinces; (c) North-West vs. other four provinces; (d) Limpopo vs. other four provinces; and (e) Gauteng vs. other for provinces. metabolites. The abundance of the corresponding resonances indicated the higher natural concentrations of these metabolites in the leaves. The relatively low abundance of secondary metabolites and the large amount of resonance of primary metabolites in the spectrum made the detection of secondary metabolites, such as phenolic and flavonoids more difficult as compared to the detection of the primary metabolites. Liquid Chromatography Mass Spectroscopy was applied to further investigate the abundance of secondary metabolites. When Patial Least Square (PLS) was performed on the methanol extracts from LC-MS, the samples appeared to be grouped according to their places of origin (Figure 4). The samples from Mpumalanga showed some similarities to those from, North-West and KwaZulu-Natal. The VIP scores where generated and the assignment of the metabolites in the VIP scores were based on previously published literature (Figure 5). The VIP scores (Table 1) confirms the NMR profile that indeed the samples from Limpopo and those from Gauteng contained low to no secondary metabolites as important in differentiating them to the other provinces, this is shown by green and light green colors in the annotated metabolites of the VIP scores. The VIP scores also showed that the metabolite levels of Quercetin 3-0- β -D-(6"-galloyl)-galactopyranoside were high in the samples from North-West followed by the ones from KwaZulu-Natal and Mpumalanga (red, orange, and | Sampling place | Latitude | Longitude | | |----------------------------|-----------|------------|--| | Limpopo province; | | | | | -Mookgophong | 24.5037°S | 28.7140°E | | | -Ga-Sekgoboko | 24.0894°S | 28.9299°E | | | Gauteng province; | | | | | -Jubilee | 25.4057°S | 28.2691°E | | | -Babelegi | 25.3554°S | 28.2790°E | | | North-West Province; | | | | | -Letlhabile | 25.4903°S | 27.8415°E | | | -Kgabaatsane | 25.5361°S | 27.9571°E | | | Mpumalanga; | | | | | -Machanodorp | 25.6673°S | 30.2455°E | | | -ARC-Nelspruit | 25.4518°S | 30.9697°E | | | KwaZulu-Natal; | | | | | -Ntibane bushveld hideaway | 27.7062°S | 31.49032°S | | | -Mahlalela game range | 27.7627°S | 29.9344°S | | Table 1: Leaf samples collected from different study sites. yellow respectively). The annotated metabolites in Table 1, confirmed the highest levels of the metabolites Quercetin 3-0- β -D-(6"-galloyl)-galactopyranoside, Kaempferol-3-0- α -L-rhamnopyranoside and (-)-Epigallocatechin3-0-galloyl ester in the samples from North-West, Mpumalanga and KwaZulu-Natal. # Discussion Virtual inspection of the ¹H NMR spectra showed no clear differences between samples from different provinces, this indicated the similarities within the species. Upon multivariate data analysis, five groups were observed according to the provinces, indicating the geographical influence on the chemical composition. The samples from Gauteng and KwaZulu-Natal was however clustered closer together and more separated from the other provinces. When the contribution plots were constructed on the samples from Gauteng, it was clear that no secondary metabolites contributed to the differences between Gauteng and other provinces. The putative annotation presented in Table 2 was based on previously published metabolites isolated from the leaves of *S. birrea* [16]. The samples from Gauteng presented sugars, and some amino acids as the metabolites of importance. On the other side, the samples from KwaZulu-Natal showed very few sugars, few aliphatic and more aromatics to be important in the clustering of the samples from this province (Figure 3b). Visual inspection of the contribution plots from both KwaZulu-Natal and Gauteng confirms that the samples from Gauteng are rich with sugars while those from KwaZulu-Natal are rich in aromatic metabolites. It can therefore be concluded based on ¹HNMR data analysis that the separation of samples from Gauteng to those from KwaZulu-Natal, Limpopo, Mpumalanga and North West is influenced by the combination of sugars and some | Province | Metabolite | Chemical shift | |---------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------| | KwaZulu-Natal | 1. Quercetin 3-0-β-D- (6"-galloyl) glucopyranoside | 4.19 (dd) 4.23 (dd) 5.41 (dd) 6.17 (d) 6.36 (d) 6.71 (d) | | | | 7.42 (d) 7.57 (dd) | | | 2. Quercetin 3-0β-D- (6"-galloyl) galactopyranoside. | 4.04 (dd) 4.08 (dd) 5.36 (d) 6.18 (d) 6.39 (d) 6.81 (d) | | | | 7.51 (d) 7.65 (dd) | | | 3. Quercetin 3-0-α-L- rhamnopyranoside | 5.24 (d) 6.19 (d) 6.38 (d) 6.85 (d) 7.24 (dd) 7.28 (d) | | | 4. Gallic acid | 7.04 (s) | | | 5. Threonine | 1.32 (d) | | Mpumalanga | 1.Quercetin 3-0-β-D- (6"-galloyl) glucopyranoside | 4.19 (dd) 4.23 (dd) 5.41 (dd) 6.17 (d) 6.36 (d) 6.71 (d) 7.42 (d) 7.57 (dd) | | | 2. Quercetin <i>3-0-β-D</i> - (6"-galloyl) galactopyranoside. | 4.04 (dd) 4.08 (dd) 5.36 (d) 6.18 (d) 6.39 (d) 6.81 (d)7.51 (d) 7.65 (dd) | | | 3. Kaempferol-3-0-α-L- rhamnopyranoside | 5.43 (d) 6.20 (d) 6.38 (d) | | | 4. Gallic acid | 7.04 (s) | | | 5. (-)-Epigallocatechin3-0-galloyl ester | 2.92 (dd) 3.04 (dd) 5.65 (s) 6.03 (d) 6.06 (d) 7.04 (s) 2.92 (dd) 3.04 (dd) 5.65 (s) 6.03 (d) 6.06 (d) | | | 6. Leucine | 0.96 (d) 1.70 (m) 3.73 (m) | | Gauteng | 1.Sucrose | 3.44 (t) 3.54 (dd) 3.68 (s) 3.76 (t) 3.78-3.90 (m) 4.04 (t) 4.17 (d) 5.39 (d) | | | 3. Lactate | 1.32 (d) 4.03 (q) | | North-West | 1. Quercetin 3-0-β-D- (6"-galloyl) Glucopyranoside | 4.19 (dd) 4.23 (dd) 5.41 (dd) 6.17 (d) 6.36 (d) 6.71 (d)7.42 (d) 7.57 (dd) | | | 2. Quercetin 3-0-α-L- rhamnopyranoside | 5.24 (d) 6.19 (d) 6.38 (d) 6.85 (d) 7.24 (dd) 7.28 (d) | | | 3. Kaempferol-3-0-α-L- | 5.43 (d) 6.20 (d) 6.38 (d) | | | 4. Quercetin 3-0-b-D- (6"-galloyl) galactopyranoside. | 4.04 (dd) 4.08 (dd) 5.36 (d) 6.18 (d) 6.39 (d) 6.81 (d)7.51 (d) 7.65 (dd) | | | 5.(-)-Epigallocatechin3-0-galloyl ester | 2.92 (dd) 3.04 (dd) 5.65 (s) 6.03 (d) 6.06 (d) | | Limpopo | 1.Sucrose | 3.44 (t) 3.54 (dd) 6.68 (s) 3.76 (t) 3.78-3.90 (m) 4.04 (t) 4.17 (d) 5.39 (d) | | | 2. Fatty acids | 0.88 (t) | Table 2: Putative assignment of S. birrea metabolites from NMR buckets [CD₃OD]. amino acids, while the separation of samples from KwaZulu-Natal to those from the other four provinces is mostly influenced by aromatic compounds. Complementarily to NMR data, the use of C18 reversed phase LC-MS detected metabolites such as flavonoids with the PLS that is analogous to the one obtained in the OPLS-DA from NMR. Liquid Chromatography Mass Spectroscopy detected mostly the secondary metabolites, similar to those partially detected by NMR (Table 2). Very few flavonoids annotated from Sclerocarya birrea from different provinces supports previously published literature that concluded the use of S. birrea to treat various human ailments. The anticancer potential of this plant is evidenced by the presence of the flavonoids; quercetin and kaempferol. These two metabolites are believed to act synergistically in the reduction of cell proliferation of cancer cells; this was concluded in an in-vivo study [25]. Moreover, in the study conducted by Alkhalidy et al. [26], the metabolite kaempferol showed potential in the treatment of diabetes. Alkhalidy et al. [26] concluded that kaempferol treatment reversed the high fat diet impaired glucose transport-4 and AMP-dependent protein kinase expression in both muscles and adipose tissues from obese mice. This study provided the baseline information on the healing effect of S. birrea, by providing the snapshot of the metabolites found in each province. This study will attract researchers to use samples from different geographical origins when screening for activity since the geographical origin affects the abundance of the metabolites. #### Conclusion In this study, *Sclerocarya birrea* leaf extracts from different provinces were compared and characterized based on multivariate statistical analysis of ¹H NMR and LC-MS based metabolomics data. Both the primary metabolites and secondary metabolites were annotated. S. birrea from different provinces exhibited significant differences in their metabolite profiles confirming that several metabolites can be used as markers for origin. The samples also showed some close similarities, in that some metabolites, Quercetin 3-0- β -D-(6"-galloyl) galactopyranoside, Kaempferol-3-0- α -L-rhamnopyranoside, (-)-Epigallocatechin-3-0-galloyl ester and gallic acid where common between samples from North-West, Mpumalanga and Kwazulu-Natal. The most significant difference was with regard to the sugars in the samples from Gauteng and Limpopo regions (Table 2) influenced by glycosylation. In this study, we demonstrated for the first time that ¹H NMR and LC-MS based profiling provides a fast and efficient method to fingerprint metabolic differences between same species of S. birrea grown in different regions. #### Acknowledgement The authors thank the department of Science and Technology for financial assistance. #### References - Leakey R, Shackleton S, Plessis PD (2005) Domestication potential of Marula (Sclerocarya birrea subsp caffra) in South Africa and Namibia: 1. Phenotypic variation in fruit traits. Agroforestry Systems 64: 25-35. - Eloff J (2001) Antibacterial activity of Marula (Sclerocarya birrea (A. rich.) Hochst. subsp. caffra(Sond.) Kokwaro)(Anacardiaceae) bark and leaves. J Ethnopharmacol 76: 305-308. - Tanih NF, Ndip RN (2013) The acetone extract of sclerocarya birrea (Anacardiaceae) possesses antiproliferative and apoptotic potential against human breast cancer cell lines (MCF-7). Sci World J 2013: 1-7. - Ojewole JA (2004) Evaluation of the analgesic, anti-inflammatory and antidiabetic properties of Sclerocarya birrea (A. Rich.) Hochst. stem-bark aqueous extract in mice and rats. Phytother Res 18: 601-608. - Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protocol 5: 536-549. - Dunn WB, Ellis DI (2005) Metabolomics: current analytical platforms and methodologies. TrAC Trends Analyt Chem 24: 285-294. - Tikunov Y, Lommen A, De Vos CH, Verhoeven HA, Bino RJ, et al. (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139: 1125-1137. - 8. Moco S, Vervoort J, Bino RJ, De Vos RC, Bino R (2007a) Metabolomics technologies and metabolite identification. Trends Analyt Chem 26: 855-866. - Le Gall G, Colquhoun IJ, Davis AL, Collins GJ, Verhoeyen ME (2003) Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J Agri Food Chem 51: 2447-2456. - Moco S, Vervoort J, Bino RJ, De Vos RC, Bino R (2007b) Metabolomics technologies and metabolite identification. Trends Analyt Chem 26: 855-866. - Sawada Y, Hirai MY (2013) Integrated LC-MS/MS system for plant metabolomics. Comput Struct Biotechnol J 4: 1-6. - Moco S, Bino RJ, Vorst O, Verhoeven HA, De Groot J, et al. (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141: 1205-1218. - Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiol Plant 132: 117-135. - Ward JL, Baker JM, Beale MH (2007) Recent applications of NMR spectroscopy in plant metabolomics. Febs J 274: 1126-1131. - 15. Wolfender J, Ndjoko K, Hostettmann K (2001) The potential of LC-NMR in phytochemical analysis. Phytochem Anal 12: 2-22. - Braca A, Politi M, Sanogo R, Sanou H, Morelli I, et al. (2003) Chemical composition and antioxidant activity of phenolic compounds from wild and cultivated Sclerocarya birrea (Anacardiaceae) leaves. J Agri Food Chem 51: 6689-6695. - 17. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Botany 56: 255-265. - Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29: 267-275. - Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, et al. (2009) Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genom 10: 1-34. - Robert AVB, Hoefsloot HC, Westerhuis JA, Smilde AK, Mariët JVW (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7: 142. - Kim J, Jung Y, Bong Y, Lee K, Hwang G (2012) Determination of the geographical origin of kimchi by 1H NMR-based metabolite profiling. Biosci Biotechnol Biochem 76: 1752-1757. - Verpoorte R, Choi Y, Kim H (2007) NMR-based metabolomics at work in phytochemistry. Phytochem Rev 6: 3-14. - 23. Umetrics A (1992) SIMCA-P, SIMCA-P. - Wurtele ES, Chappell J, Jones AD, Celiz MD, Ransom N, et al. (2012) Medicinal plants: a public resource for metabolomics and hypothesis development. Metabolites 2: 1031-1059. - 25. Ackland ML, Van De Waarsenburg S, Jones R (2005) Synergistic antiproliferative action of the flavonols quercetin and kaempferol in cultured human cancer cell lines. In vivo (Athens, Greece) 19: 69-76. - Alkhalidy H, Moore W, Zhang Y, Mcmillan R, Wang A, et al. (2015) Small Molecule Kaempferol Promotes Insulin Sensitivity and Preserved Pancreatic beta -Cell Mass in Middle-Aged Obese Diabetic Mice. J Diabetes Res 2015: 1-14. Metabolomics, an open access journal ISSN: 2153-0769