
Volume 7 • Issue 4• 1000425J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Open AccessResearch Article

Journal of 
Applied & Computational Mathematics 

Jour
na

l o
f A

pp
lie

d & Computational M
athem

atics

ISSN: 2168-9679

Akintunde, J Appl Computat Math 2018, 7:4
DOI: 10.4172/2168-9679.1000425

Keywords: Uncertainty claims; Weibull distribution; Insurance; 
Pricing; Power law

Introduction
Distortion risk measures are used to price financial and insurance 

risk and estimate the returns of most financial assets [1]. This is done 
by adjusting the true probability to give more weight to higher risks 
events.

They are used to determine the future price in respect of a random 
loss variable x with the view to avoid insolvency [2]. The future returns 
for the risky assets is the expected value under the distorted probability 
which is called the risk adjusted measure. Distortion risk measure 
predicts the price of return for a given risk portfolio, based on its 
downside risk potentials [3].

A Distortion risk measure can be defined as the distorted expectation 
of any non-negative loss random variable X [4]. It is accomplished by 
using a “dual utility” or the distortion function g as follows:

( ) ( )( ) ( )( )
0 0

Pr(  1   x xg x g f x dx g s x dx
∞ ∞

= − =∫ ∫                 (1)

Where g:[0,1]→[0,1] is a continuous increasing function with 
g(0)=0 and g(1)=1 [5].

Fx(x) denotes the cumulative distribution function of x and g(Fx(x)) 
is the distorted distribution function [6].

The survival function is given as;

Sx(x)=1−fx(x)=Pr(X>x)                  (2)

Properties of Distortion Risk Measures
The Properties of distortion risk measures as stated by Artzner et 

al. are given below:

1. Monotocity: if x ≥0,then Pr(g(x))≥0

2. Positive homogeneity: [g(λx)=λPr[g(x)],∀λ≥0

3. Translate invariance: [g(x+c)]=Pr[g(x)] +c,∀c∊ 

4. Pr[g(-x)]=-Pr[g(-x)]where g(x)=1-g(1-x)

5. If a random variable xn has a finite number of values, that is 

a. (xn→x),and if Pr(g(x)) exits, then Pr(g(x))→Pr(g(x))

6. Comonotic additivity:  If x and y are comonotic risk taking 
positive and negative values, then: Pr[g(x+y)]=Pr[g(x)]+Pr[g(y)]

7.  In general cases, distortion risk measures are not additive

a. Pr[g(x+y)]≠Pr[g(x)]+Pr[g(y)]

8. Sub-additivity:  If the distortion function g(x) is concave , then 

a. Pr[g(x+y)]≤Pr[g(x)]+Pr[g(y)]. 

9. For a non-decreasing distortion function g, the associated risk 
measure Pr(g) is consistent with the stochastic dominance of 
order one. That is, if x ≤ y, then Pr[g(x)]≤Pr[g(y)]

10. For non-decreasing concave distortion function g, the 
associated risk measure Pr(g) is consistent with the stochastic 
dominance of order two. That is, if x < y then: Pr[g(x)]≤Pr[g(y)].

11. For a strictly concave function g, the associated risk measure 
Pr(g) is consistent with the stochastic dominance of order 2, if 
for x > y then Pr[g(x)]<Pr[g(y)]. 

Example of distortion risk measure

The mathematical expectation of g(x)=x if it exists is given as:

E(x)=Pr[g(x)]                     (3)

And the variance at risk (VaR) corresponds to the distortion given 
as follows: 
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Abstract
The problem of uncertainty claim pricing using distortion operators is considered in this research paper. This 

approach was first developed in insurance pricing, where the original distortion function was defined in terms of 
the normal probability distribution. This approach is generalized by using a distortion that is based on the Weibull 
distribution in this research paper. The Weibull family allows for heavier and skewed tail because it is so flexible that 
other statistical distributions can be recovered from it by change of parameters. The problem of uncertainty claims 
has been extensively studied for non-Gaussian model in which the formula was derived for the normal Inverse 
Gaussian distribution Asset pricing. It is shown in this paper how Weibull based distortion function can used to derive 
the formula for asset pricing of uncertainty future returns of a risky asset. The risk measure for the incurred risk 
modelled by the Weibull variables was derived and it was shown that it follows the power law.
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As shown in Figure 1 above, the distortion function is a step 
function with discontinuity at 1−α and a big jump at u=α. This 
discontinuity shows that VaR is not a coherent risk measure. The value 
1−α the ruin or the expected shortfall. The conditional value at risk 
((VaR) correspond to the distortion:

( )
1,    

  ,     
1

if u a
g x u if u aα

α

<


−
≥ −

                 (5)

The conditional value at risk ((VaR) as depicted is continuous but 
not differentiable at u=α because of its zero value at this point. The 
distortion function g maps all percentiles below α to a simple point 0. 
This means that all the information in that part of the distribution is 
lost. Any smooty differentiable distortion g will give a coherent risk 
measure that is different from cVaR. A class of distortion based on the 
normal distribution in other to know the price for future returns of 
most risk assets was proposed as follows: 

1( )] ( ) [ ( ) ]xPrg x gS x dx uφ φ α−= = +∫                  (6)

Where in Figure 2 φ is the standard normal cumulative function 
(this is stated by Wang, S, S0) the pricing kernel associated with this 
distribution is: 

( )
0

:H x h z g S dxα αα
−∞

 =  =  ∫                  (7)

And E[h(z+α)]=S0e
α+a                  (8)

Where h is a continuous positive and increasing function. Clearly, 
for a normal random variable , 

H[x=h(z):α]=E[h(z+α)]                       (9)

H[x=h(z):-α]⇒H[ST−α]=S0e
ZT+αT                       (10)

Black-Scholes modelled the risk position S_1 of an asset at time by 
a geometric Brownian motion as: 

2
 

2
1 0 1; 0

N t

S S e w t
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−  
 = ≥

                 (11)

Where w is the Brownian motion.

For the pay-off of a European call option (with maturity T and 
strike price K), we have: 

ST=C(ST,K)=(ST−K)                  (12)

Where ST is a log-normal random variable.

Applying kernel to this play-off with 

u ra Tα
σ

−
=                     (13)

It can be shown that:
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  (14)

The risk free rate γ shows that the Black-Scholes formula can be 
recovered from the distortion operator.

The Weibull Distribution
A generalized version of the distortion that is based on a Weibull 

distribution is introduced.

Definition: the Weibull distribution function is given by:

( ) ( ) ( ) ( )1

1, , , 

kxk

k

xkf x f x k e
α

βα
β α

β β

− −−

−

−
= =                 (15)

This consist of the failure and reliability notes [3]. x is the loss 
random variable and α and β are the scale parameter and k is the shape 
parameter. The shape parameter determines the rate of the return and 
the scale parameter β>0 is proportional to the mean time failure.

Firstly, we consider the empirical survival function Sx, then the 
Weibull distortion operator is used to compute: 

( ) ( )
0

Pr xg x gS x dx
∞

  =  ∫
We define the Weibull distribution operator as 

gx,k,β,α(u)=φw

gx,k,β,α(u)=ɸw[ɸw-1(u)+λ]                   (16)

The same calibration; as in Wang distortion is adopted; firstly if 
a random variable has a Weibull distribution, its probability density 
function (pdf) is: 
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             (17)

Where k>0, α>0. When α=0, it reduces to two-parameter Weibull 
distribution. The failure return of the risky asset at ST is assumed to 
follow a Weibull distribution instead of the normal distribution.

ST=g(Zt)                   (18)

Is the price of the security at time T.

For a function g(u)=S0e
u of a random variable Zt with distribution 

web (x,k,β,α) implies f (x,k,β,α). 

gu  
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Figure 1: Distortion as a step function.
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Figure 2: The conditional value at risk as distortion function.
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H(ST,λ)=ɸw-1(u)+λ]=gx,k,β,αSx(x)dx                (19)

Where ɸw s the Weibull distribution.

Proposition

Let z be a random variable and let x=g(z) be the transformation of 
the continuous function f(x) and ɸw=f(x,k,β,α) =web (x,k,β,α) implies 
f(x). Given that:

S(x)=1-f(x)=Pr(x>t)

or S(x)=1=web(x,k,β,α)

⇒1=ɸw(x,k,β,α)

Then, 

( ) ( ) ( )
0

,  xH x g S x dx E g zαα λβ
∞

= =  +  ∫                  (20)

Proof 

Define

( ) ( ) ( )1

0

,   w w
xH x g S x dx uαα φ φ λ

∞
− = = + ∫

Where S(x)=Pr(x>t)=Pr(g(x)>t) 
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                (21)

Applying in eqn. (21) to the distortion function, we obtain 

G(x,k,β,α)(Sx(t)=ɸw[ɸw−1(u)+λ].ɸw[ɸw-1(ɸw[-g-1(t)]+λ]

=ɸw[-g-1(t)+λ]=1−ɸw(g-1(t)-λ)                   (22)

The second application of probability and normalizing gives:
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                  (23)

Note: if 
zx α
β
−

=

xβ=z−α

z=xβ+α

Applying the above, we get:

Pr[zβ+α+αβ]>g-1(t)

Pr[z+αβ]>g-1(t)                     (24)

Multiplying through by g, we have:

Pr[g(z+αβ)>g-1(t).g]=Pr[g(z+αβ)>t]

=En[g(z+αβ)]                       (25)

Therefore, 

( ) ( ) 0  n n z
x xE E g x g S x dx E S e αβ

ααβ + =  +  = =   ∫               (26)

Where En denotes the expectation under the density measure n. 

So  H(ST=λ)=E[S0e
z+αβT]                      (27)

This result shows that under a gx,k,β,α distortion, a Weibull random 
is translated by a force λβ. This generalizes the equivalent result found 
in normal Inverse Gaussian Distribution (NIG). 

This implies G[St−λ] to: 

G[ST-λ]=S0e
Λt                         (28)

Under Weibull distribution with value λɸw[ɸw-1(u)+λ] , the price at 
ST evolves like a risk neutral asset because λ is calibrated to verify the 
risk neutral condition.

Hence, 

[ ] ( )
( )

( )

0 , , ,

1
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 T
t x k x
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u E S e
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λ
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λ β

λ

φ φ λ
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− = =

   = + =   
=  +  

∫
 

As required. This implies; 

G[ST−λ]=E[S0e
λt-λβT]                (29)

The positivity of g in E[z+iβ] can be relaxed. More generally, the 
proposition can be extended to the extended to the case when the 
security price is function of symmetrically distributed random variable. 
Apply the price E[g(Z+λβ], the capital required for the standard call 
payoff is:

G[F(ST,K);λ]=E[g(2T+λβ)]

=[S0 e
2T+λβ−K]                    (30)

( ) ( )2 
0    , , , ,   S e k web x k dtβ α λβ

∞

−∞

= − +∫              (31)

Having known the density function G[F(ST)] of the stock price at 
the expiring time ST under the risk neutral measure λβ we can easily 
price call and put option by simply calculating the expected value [4].

Hence, for a call option with strike price k at time ST to expiration 
ST, the value at time 0 is therefore given by expectation of the payoff 
under the martingale measure ;
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Where π is the probability under Q of the future prize of the risk 
asset, 

( ) ( ) 1 
0,  Z k ZK

Q
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β
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Then, 
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ST evolves as a risk neutral asset.

This shows that the price evaluated with the pricing kernel 
associated to the Weibull distortion with parameter  is giving by: 

( ) ( ) ( )
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And 

e-ItG[F(ST,K)-λ]=S0

e-iTG[F(ST,K)-λ]-S0web[Qα,x,k(α+λ)]-Ke-iTweb[Qα: x,k,βT,(α+λ)T]      (37)

Which is the price at the time t=0. That is the price at ST.

Theorem

If Zt has the Weibull distribution and a power function g(z)=Zβ

then the optimal strategy has the power law distribution given by: 

( )
1zH z

β

β γβ

−

=                    (38)

Proof 

Here, Zt is the continuous returns of a security. Metaz [5] had 
shown that it is possible to find an optimal investment strategy in 
terms of the probability density function describing the prices returns 
of a security. This strategy optimizes some appropriate measure of risk. 
Hence given our assumption of Weibull distribution of asset returns, 
we define the strategy that optimizes the variance of the distribution as: 

( ) ( )
0

  pH z g z dz
∞

= ∫                    (39)

Where g(z) as in eqn.(15). Eqn. (34) reduces to:

( )
0

 exppH z z dzβγ
∞

 = − ∫                    (40)

Set 1 11 ,   dxx z then z or dz z dx
dz

β β βγ γβ
γβ

− −= = = . Substitute this 

in eqn. (40), to get; 

( ) ( )1

0

1

1 exp  

1

pH z z x dx

z

β

β

γβ

γβ

∞
−

−

= −

=

∫
  (As required). 

Conclusion
Under Weibull distortion with value ( )1 ,  ,w wrc ln uηλ φ φ λ

β
−−  = +   

the price at future time ST evolves like a risk neutral risk neutral risk. λ 
Is calibrated to verify the risk neutral condition.

The assumption that the prize of return at ST follows a Weibull 
distribution in place of normal distribution is based on its flexibility to 
follow the behaviour of other statistical distribution such as exponential 
and normal distribution. That is, other statistical distributions can be 
recovered from the Weibull distribution by change of the values of 
the parameters, in eqn. (38), (1-β) is the characteristic exponent of 
the generalized power law distribution. This shows that power law 
the generalized power law distribution. This shows that power law 
property relation characterizes the measure of risks modelled by the 
Weibull variables. The incurred risk measure of an investor faced with 
investment decision in eqn. (38).
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