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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease affecting 

~24 million people worldwide and this number could double by 2030 
[1]. AD is characterized by specific neuronal death with accumulated 
neurofibrillary tangles (NFT) and extracellular amyloid beta (Aβ) 
deposits [2]. These characteristics are accompanied by memory 
impairment, cognitive decline and synaptic dysfunction [3]. Aβ which 
is produced by serial cleavage of the amyloid precursor protein (APP), 
directly injures neurons of the neocortical and limbic system [4]. By 
indirectly activating the microglia that release pro-inflammatory 
cytokines and reactive oxygen species (ROS), Aβ exerts additional 
neurotoxic effects [5,6]. Other contributors to AD pathogenesis 
include apolipoprotein E genotype [7]; neurofilament and Tau 
hyperphosphorylation [8-11], and Aβ generation [12]. AD being a 
multifactorial disease [13], no single factor has been identified as 
the main contributor to its development [14-17]. In various studies, 
oxidative stress has been linked to AD pathogenesis [18-20]. Oxidative 
stress can cause DNA damage, alter the levels and activity of DNA-
repair proteins [21,13]. Thus, oxidative stress can induce cellular 
damage by ROS generation, and elevated levels of oxidative damage 
in DNA are observed in AD brains [22]. Cellular DNA damage and 
repair follow a homeostatic process, but as the cells age, the damage 
exceeds repair consequently disrupting the homeostasis [23,24]. Aging, 
a major risk factor in AD, is associated with cumulative oxidative 
stress and it is proposed that elevated levels of oxidized nucleic acids in 
neurons can lead to neuronal dysfunction in AD patients [25-27] thus 
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Abstract
The pathogenesis of Alzheimer’s disease (AD), characterized by prevalent neuronal death and extracellular 

deposit of amyloid plaques, is poorly understood. DNA lesions downstream of reduced DNA repair ability have been 
reported in AD brains. Neurons predominantly use a mechanism to repair double-strand DNA breaks (DSB), which 
is non-homologous end joining (NHEJ). NHEJ requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK 
is a holoenzyme comprising the p460 kD catalytic subunit (DNA-PKcs) and its activator Ku, a heterodimer of p86 and 
p70 subunits. Ku first binds and then recruits DNA-PKcs to double-stranded DNA ends before NHEJ process begins. 
Studies have shown reduced NHEJ activity as well as DNA-PKcs and Ku protein levels in AD brains suggesting possible 
contribution of unrepaired DSB to AD development. However, normal aging brains also show reduced DNA-PKcs and 
Ku levels thus challenging the notion of any direct link between NHEJ and AD. Another kinase, p38 MAPK is induced 
by various DNA damaging agents and DSB itself.  Increased DNA damage with aging could induce p38 MAPK and its 
induction may be sustained when DNA repair is compromised in the brain with reduced DNA-PK activity. Combined, 
these two events may potentially set the stage for an awry nervous system approaching AD.
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linking oxidative damage to neurodegeneration [28]. Accumulation of 
DNA damage due to dysfunctional DNA repair machinery can create 
events contributing to AD [29-32].  Furthermore, studies show that 
some human hereditary genetic defects in the DNA repair system 
are apparent during early onset and progressive neurodegeneration 
[33,34]. Understanding the factors responsible for DNA repair defects 
can unravel potential intervention points of AD pathogenesis caused by 
genome instability.

DNA repair, DNA-PK and Aβ
DNA damage induces the expression and activity of many kinases 

including the members of the PI-3 kinase family [35]. One of these 
kinases, the DNA-dependent protein kinase (DNA-PK) preferentially 
phosphorylates the serines (S) and threonines (T) of its target substrates 
[36]. DNA-PK is a holoenzyme comprising a catalytic subunit (DNA-
PKcs) of p460 and a regulatory subunit (Ku) of 70 kD (Ku70) and 80 
kD (Ku80) heterodimer. Ku possesses the ability to bind to DNA ends 
[37,38]. DNA-PK plays a role in transcription, DNA recombination, 
and DNA repair [39-42]. When not associated with DNA-PKcs, Ku 
independently binds DNA ends in a sequence-independent manner 
[43]. However, Ku is essential for targeting DNA-PKcs to the damaged 
DNA sites in living cells [44]. Studies show that double strand DNA 
breaks (DSB) can activate DNA-PK activity both in trans (via kinase 
autophosphrylation) or cis (via specific DNA strand orientation and 
base sequence) modes [45-47].  

DNA repair pathways used by cells include base excision repair 
(BER), nucleotide excision repair (NER), single strand break repair 
(SSBR), and double strand break repair (DSBR).  Double strand 
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in age-matched controls has been reported [81]. Compared to normal 
subjects, reduced NHEJ activity in the cortical extracts of AD brains 
and significantly lower levels of DNA-PKcs in the AD brain extracts have 
also been reported [82] suggesting a critical role of DNA-PK-mediated 
NHEJ in brain health.   

Other than its essential role in NHEJ, since DNA-PK is also 
a critical player in cell survival/death and gene transcription, it is 
compelling to directly link reduced levels of DNA-PK and Ku with 
less proficient NHEJ to neurodegeneration occurring in AD brains. 
Already challenged with this condition, additional DNA damage 
caused by agents such as ROS (Figure 1) to the neurons may misdirect 
them to re-enter cell cycle albeit unsuccessfully, which in turn can lead 
to accumulation of excessive genomic damage causing neuronal death. 
Therefore, it’s most likely that reduced levels of DNA-PKcs and Ku80/Ku70 
create the detrimental upstream event before the advent of AD [83].

The mechanism of how reduced DNA-PK activity may be linked to 
Aβ is best shown in in vitro studies.  For example, in NGF-differentiated 
PC12 cells, sub-lethal levels of aggregated Aβ 25-35 inhibited DNA-
PK activity as did hydrogen peroxide [84]. It is likely that Aβ 
-induced ROS-mediated DNA-PKcs degradation via carbonylation, an 
irreversible oxidative protein modification [85,86]. Conversely, cultured 
hippocampal neurons from severe combined immunodeficient (SCID) 
mice that lack DNA-PK activity have been shown to be hypersensitive 
to apoptosis upon exposure to Aβ [87]. In a normal individual however, 
whether Aβ induced attenuation of DNA-PK activity compromising 
NHEJ is linked to the onset of AD awaits examination.

P38 MAPK and Aβ
The mitogen-activated protein kinase (MAPK) family of serine/

threonine kinases are activated by extracellular stimuli, such as growth 
factors, cytokines, hormones and cellular stresses and thus regulate a 
number of major cellular processes including cell growth, differentiation 
and survival [88]. One of the major MAPK family members is, p38 

break (DSB) being the most lethal, in eukaryotes, two major DSB 
repair pathways operate; non-homologous end joining (NHEJ) and 
homologous recombination (HR). In higher order organisms, NHEJ 
functions as the predominant pathway for DSBR throughout the cell 
cycle [48-50], whereas HR functions are limited to the S and G2 stages 
of the cell cycle [51]. Specifically, DNA-PK actively engages in accessing 
the DNA ends during NHEJ [52,53]. 

NHEJ is the predominant dsDNA repair pathway in mammalian 
cells [54] and is more error-prone compared to HR as it acts at the DNA 
break points and the ensuing repair process can result in a loss of one or 
a few nucleotides. Fortunately, most of the higher eukaryote genome is 
non-coding. Therefore, errors resulting from DSB repair by NHEJ rarely 
lead to detriments. Nonetheless, with aging, these non-detrimental 
errors eventually can cause genome instability upon progressive 
accumulation, and cause cell death or dysfunction. It is important to 
note that 10% of p53 mutations in human cancers reportedly occurred 
due to deletions resulting from compromised NHEJ [55]. Mature post-
mitotic neurons do not undergo proliferation [56,57], but they are one 
of the most metabolically and transcriptionally  active cells [58]. Due 
to this reason, these neurons can be more vulnerable to DNA damage-
induced injury. In post-mitotic neurons, since NHEJ is the predominant 
pathway for DSB repair [59,60], mice deficient in DSB repair pathway 
components (DNA Ligase IV, XRCC4, Ku70 and Ku 80) (Figure 1) 
show robust apoptosis of these neurons [12,61]. Furthermore, mice 
with defective NHEJ undergo accelerated aging. Severity of the loss of 
NHEJ activity in the developing brain manifests in prenatal lethality 
and adult neurodegenerative diseases [12,62,63].  

Post-mitotic neurons that are terminally differentiated, when 
triggered to re-enter cell cycle following chronic or acute insults 
inducing DNA damage and/or oxidative stress, undergo apoptosis 
[64,65]. Neurons re-entering cell cycle are prone to accrue DNA 
damage [65,66]. Therefore, it is possible that DNA replication is a 
consequence of cell cycle re-entry that precedes neurodegeneration 
in AD brains [67]. In addition, reactive oxygen/nitrogen species can 
cause misdirected and inefficient DNA replication, called ‘replication 
stress’ [68,69], which during AD pathogenesis can lead to genomic 
instability thus facilitating Aβ accumulation and deregulation of cell 
cycles. In post-mitotic neurons, these adverse events can be further 
amplified with the existence of defective DNA repair systems leading 
to accumulation of additional DNA damages and genomic instabilities 
[70,71]. It is plausible that intracellular increase in DNA content 
reported in AD brains [72,67] could originate from these dual events. 
In fact, it has been reported that DNA-PKcs mutant cells under stress 
undergo non-arrested replication [73]. Also suggested is a possibility 
that accumulated single-stranded DNA (ssDNA) at replication forks 
may create aberrant DNA structures leading to DSBs that activate DNA-
PK [74]. Based on these findings, it is apparent that neurons deficient 
in DNA-PK activity could sustain unhindered replication stress leading 
to genome instability (Figure 1).  In physiologic conditions, one of the 
most important roles DNA-PK plays is sensing the DNA damage [75] 
and then, inducing signaling pathways that can lead to programmed cell 
death [76]. In Ku80-/- mice, defective NHEJ and telomere maintenance 
with premature aging have been reported [77,78]. Reductions in Ku80 
and DNA-PKcs protein levels as well as Ku80’s DNA-binding ability 
following severe ischemic injury leading to neuronal death in rabbits 
have also been shown [79]. Furthermore, although not significantly 
different from the age-matched controls, reduced Ku-DNA binding in 
extracts of post-mortem AD mid-frontal cortex suggests a potential 
link to reduced levels of Ku and DNA-PKcs proteins [80]. Reduced 
DNA-PKcs expression in neurons and astrocytes of AD brains as well as 

Figure 1:  Schematic presentation of a potential link of DNA double strand 
breaks (DSB), DNA-PK and p38α MAPK in normal and AD brains. Upon 
induction of DSBs either by normal aging/ROS or other DNA damaging agents, 
Ku80/Ku70 andDNA-PKcs and are rapidly recruited to DNA ends, and DNA 
repair occurs as it would in normal brains. However, in AD brains, in addition 
to formation of Aβ oligomers from Aβ peptides, sustained DSBs in the genome 
would cause genome instability leading to the loss of normal neuronal activity. 
Additionally, with depleted DNA-PK activity andNHEJ, sustained DSBs could 
activate p38α MAPK via ATM triggering neuronal death, potentially mediated 
by one of the downstream pathways being ERK MAPK down regulation and 
another via c-jun activation. Disruption of somatostatin signaling via Ku80 (a 
somatostatin receptor) depletion may also lead to Aβ oligomerization, a prime 
trigger of AD. Shaded areas show normal (gray) and deregulated sequences 
of events (purple).   
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MAPK [89]. P38 MAPK activation can have both beneficial and adverse 
effects on cell growth and survival depending on the cell type and p38 
MAPK subtype; for example, activated p38 MAPK pathway has an anti-
apoptotic effect during neuronal differentiation, but is pro-apoptotic in 
mature neurons exposed to various stresses such as excitotoxic stimuli 
[90,91]. Various DNA damaging agents including UV irradiation and 
ionizing radiation can induce p38 MAPK activity [92,93]. Activation of 
p38 MAPK by DSB-inducing agents occurs via phosphorylation of p38 
MAPK itself [94].

Significantly higher level of activated p38 MAPK along with 
the activation of its upstream activator, mitogen-activated protein 
kinase kinase 6 (MKK6), have been reported in early stages of AD 
[95,96]. In the amyloid precursor protein (APP)-transgenic mice Aβ 
accumulation with increased p38 MAPK activity has been reported 
[97-99]. Aβ induces p38 MAPK activity (Figure 1) through activation 
of pro-inflammatory cytokines [100-102]. Inhibition of p38 MAPK 
activity suppressed expression of pro-inflammatory cytokines and 
consequently attenuated synaptic dysfunction causing behavioral 
alterations in an AD mouse model [103]. Knocking down p38α MAPK 
in neurons from APP/presenilin 1(PS1) double transgenic mice that 
overexpress human mutated APP and PS1 enhanced autophagy and 
promoted BACE1 (β-site APP-cleaving enzyme) degradation resulting 
in reduced Aβ generation [104].  

Activated-p38 MAPK has been shown to co-localize with cyclin-
dependent kinase 5 (Cdk5) in Tg2576 mice, a murine model of AD 
[105]. Cdk5 inhibition has been shown to be more neuroprotective 
compared to p38 MAPK/c-jun inhibition, which suggests that Cdk5 may 
act upstream regulating neurodegenerative pathways triggered by p38 
MAPK [90]. Deregulated Cdk5 triggers ROS generation [91], and ROS 
is known to activate p38 MAPK (Figure 1) [90,106,107]. Activated p38 
MAPK upregulates its direct downstream target, c-Jun, a pro-apoptotic 
transcription factor that can potentially cause neuro-apoptosis in AD 
[90]. Studies have shown that c-Jun expression is up-regulated in AD 
[108].  Furthermore, c-Jun not only induces abnormal Aβ generation in 
AD via activation of the β-APP gene [29] but also promotes apoptosis 
in hippocampal neurons treated with Aβ [109,110]. Not surprisingly, 
neurons of c-Jun-null mice are resistant to Aβ -mediated toxicity [111]. 
Thus, activation of p38 MAPK, either by DSB or Aβ or both (Figure1), 
can potentially injure the neurons by inducing further Aβ generation 
and activating its target c-jun, a pro-apoptotic transcription factor.  

Activated p38 MAPK has been reported during early onset of 
AD [112]. Up-regulation of p38 MAPK also occurs during microglial 
inflammation [113]. Activated p38 MAPK localized to the NFT and the 
dystrophic neurites in AD brain [114]. However, a direct link between 
p38 MAPK activation and NFT formation was ruled out indicating that 
p38 MAPK activation could cause neurodegeneration independent 
of NFT formation [112]. Moreover, since activated p38 MAPK was 
present at a higher level in some early AD cases, but was noticed at a 
modest level in a few severe AD cases, it has been suggested that early 
activation of p38 MAPK may be critical at early stages of AD [112]. 
In vitro studies have suggested that p38 MAPK dysregulation causes 
tau hyper-phosphorylation and formation of NFT in AD [115,116]. 
There is evidence that AD patients might benefit from p38 MAPK 
inhibitors [117]. Although p38α and p38β inhibition has been shown to 
improve Aβ-induced long-term potentiation deficits [117,118], it also 
increases hyperexcitability in the APP transgenic mice [118]. Therefore, 
the specific effects of p38 inhibitors remain unclear [119,120]. 
Furthermore, roles of other p38 kinases, p38γ and p38δ, in AD are not 
known. Recently, a beneficial role of p38γ in AD was reported in mice 

showing T205 phosphorylation of tau by p38γ to be partly responsible 
for inhibiting Aβ toxicity [121]. In this context, determining threshold 
levels of specific activated p38 MAPK that can switch from a beneficial 
role in neuronal differentiation and development [122] to trigger 
adverse effects on the neuron may hold the key to understanding its 
contribution to AD.  

Conclusion
Alteration in brain pathology in AD occurs many years prior to the 

manifestation of clinical cognitive decline [123]. AD is a multifactorial 
disease and several factors contribute to its development. Identifying 
these factors or multiple pathways that go awry poses formidable 
challenges, as do attempts to link the specificity of these abnormalities 
to functional outcomes in the patients. For example, compared to 
other players associated with NHEJ, all three components of the DNA-
PK complex (DNA-PKcs, Ku80 and Ku70) are abundantly expressed 
in human cells [124] and how a reduction in any of the DNA-PK 
components in the brain that is also observed even in normally aging 
individuals  [82,80] compromises NHEJ so as to contribute to AD 
development is intriguing. Given the complexity of AD, it is imperative 
to take into consideration additional factors such as p38 MAPK 
activation that could accentuate the effects of DNA-PK deficiency 
in an otherwise normally aging individual. Ku80 is also a specific 
somatostatin receptor [125] and can regulate DNA-PK activity through 
somatostatin signaling pathway [81]. It has been speculated that Ku80 
deficiency, therefore, can disrupt somatostatin signaling leading to 
Aβ generation (Figure 1) [42].  During normal aging, since DNA-PK 
components are reduced, unrepaired DSBs could occur albeit at a level 
not sufficient to induce sustained p38 MAPK activation. In contrast, 
in AD cases, a threshold level of DSBs could induce p38 MAPK 
activation subsequently amplifying Aβ generation. Understanding the 
subtlety of the occurrences of these events would justify a deficiency 
of NHEJ during aging to be normal whereas NHEJ deficiency along 
with p38 MAPK activation to be pathogenic. Early prediction of AD 
might depend on capturing the timing of the onset of multiple pathway 
defects, such as DNA-PK, p38 MAPK and somatostatin signaling. This 
would not only help discern between normal aging-related events and 
triggers of AD but also enable identifying potential intervention points.  
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