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Introduction
When our group first started to focus on regenerative medicine 

research in 1998, the knowledge regarding characteristics of many 
types of progenitor cells and true stem cells was sparse compared to the 
information available today. Back then many hospitals and laboratories 
had established standard operating procedures for isolation and direct 
application of various therapeutic cells, which was, at that time, mainly 
blood cells and Hematopoietic Stem Cells (HSC). Isolation, expansion 
and quality measures for chondrocytes, fibroblasts, keratinocytes and 
other cells destined for clinical applications after in vitro expansion 
were underway. Back then, therapeutic cells seemed sufficiently defined 
by their origin, in combination with one or two specific cellular and 
molecular features, including size, shape and expression of cell surface 
antigens (e.g., round, CD34+ non-adherent cells from bone marrow 
were considered bona fide HSC). However, it became clear that 
Mesenchymal Stem/Stromal Cells (MSC)1, also residing for instance in 
bone marrow, could not be sufficiently defined this way since they i) 
are detected in and isolated from many different types of tissues [1], 
ii) MSC share many cellular and molecular characteristics with other
mesenchymal cells, including fibroblasts, smooth muscle cells, pericytes 
and others, especially after in vitro expansion, and iii) a defining
epitope for all human MSC is not yet defined, although expression of
CD271 (low affinity nerve growth factor receptor) and Tissue Non-
Specific Alkaline Phosphatase (TNAP) define at least proliferation and
differentiation competent subsets of human MSCs from bone marrow
[2]. But expression of CD271 plus TNAP are not investigated in depth
on MSC from other sources, nor are they confirmed as common
indicators of human MSC [3-5].

Mesenchymal Stem/Stromal Cells
A major breakthrough in MSC research came from a study in 

1999 that reported that human bone marrow-derived MSC expressed 
cell surface markers SH2 (also known as CD105, endoglin, or TGF-β 
receptor) and SH3 (also known as CD73, or ecto-5’-nucleotidase) 

[6]. These phenotypic markers later became part of the norm for 
characterization of MSC and were even declared as part of the minimal 
set of standard criteria which would allow a uniform characterization 
of MSC and facilitate exchange of data among investigators by 
the International Society for Cellular Therapy (ISCT) consensus 
conference in 2006 [3]. From that point, expression of CD73, CD90, 
CD105 and lack of hematopoietic cells surface markers was used to 
define MSC even though the source of MSC was so variable [3,7,8]. 
But the seemingly same type of cell was later described and isolated 
from many human organs including vascularized tissues and even non-
vascularized tissues, and these cells were also termed MSC [1,3-5,8-11]. 
Thus MSC are produced from bone marrow (bmMSC), adipose tissue 
(at MSC or adipose derived stem cells: ADSC), the placenta (pMSC), 
Wharton’s Jelly (wjMSC) from the umbilical cord and many other 
organs and tissues, and at present are all considered simply MSC [12].

Meanwhile it has been noted that MSC from different sources 
differ quite significantly in their gene and protein expression patterns, 
and thus in their physiological characteristics [7,13-17]. Studies on 
human MSC from bone marrow or placenta even revealed functionally 
distinct subsets of MSC within the bulk population from the same 
source [2,18]. Accordingly, chondrocytes were derived mainly 
from the CD271+TNAP+CD56+ subset of human bmMSC, whereas 
adipocytes were generated from the CD271+TNAP+CD56- subset [2]; 
and expression of CD146 correlated with the osteogenic differentiation 
potential of a subpopulation of human pMSC [16,18]. This suggests 
that we probably should define the population of MSC included in pre-
clinical research more stringently prior to initiation of clinical trials. 
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Abstract
At present worldwide there are more than 350 clinical trials involving human Mesenchmal Stem/Stromal Cells 

(MSC). These trials involve the regenerative potential of hundreds of diseases or syndromes. However, only 
approximately 10% of the conditions explored are investigated in more than 10 clinical trials, while most of the 
maladies are investigated in 3 trials or less worldwide. In addition, the MSCs used in pre-clinical studies versus 
those used in the clinical trials are produced by variable procedures. In the majority of conditions under investigation 
the outcome of the studies is therefore cumbersome to evaluate. Standardizing in vitro cell culture procedures for 
definition and production of MSC could help to facilitate the evaluation of these cells in the clinical context, especially 
in those clinical trials that are minimally addressed. We advocate consistent Good Manufacturing Practice (GMP) 
compliant procedures for production of MSC in the context of all pre-clinical experiments, especially since clinically, 
GMP-compliant production of cells is the standard anyway.

1Recently the term “mesenchymal stromal cells” was suggested to replace the 
term “mesenchymal stem cells”, since MSCs do not quite meet all requirements to 
qualify as a true stem cell.
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The definition of a MSC set by ISCT consensus conference in 2006 is 
an important and significant step towards this goal, but does not seem 
to be sufficient to define the functionally different subsets described for 
example in human bmMSC [3,19].

All MSC are Equal, but Some are More Un-equal than 
Others...

Besides the phenotypic differences noted among human MSC 
briefly mentioned above, significant variations in the differentiation 
potential of human MSC have also been described at length [3-6]. 
This differentiation potential motivated researchers and clinicians to 
consider MSC for various forms of clinical therapy. But in some of the 
pre-clinical studies towards this goal some aspects were not regarded 
in depth. We would like to discuss these issues in the context of muscle 
regeneration. For example: What is the efficacy of differentiation of 
MSCs to become, for example, smooth muscle cells? Do all bmMSCs 
expanded in vitro become smooth muscle cells, or do some cells, 
for instance the CD271+TNAP+CD56+ subset, differentiate along a 
chondrogenic and osteogenic lineage of differentiation even under 
myogenic differentiation conditions? Is it sufficient to detect only 
the expression of mRNA or proteins associated with smooth muscle 
cells by RT-PCR, quantitative RT-PCR or immune blotting? Both 
technologies allow a quantitative evaluation of steady state transcript 
and protein amounts in the cells investigated. Then again an elevated 
expression of smooth muscle cell markers could be due to a mixed 
population of MSC where just a few cells have undergone the intended 
differentiation, or may be due to a slight elevation of these genes in all 
cells, without significant differentiation of the MSC in this direction. 
Therefore do we have to include immune histochemistry or flow 
cytometry to determine the percentage of cells differentiated along 
the lineage expected? Can mix populations of MSC or only slightly 
activated but not differentiated MSC be utilized in therapy? 

The experimental differentiation of MSC toward the smooth muscle 
lineage has been described in the literature using different human cell 
sources, including bone marrow, adipose tissue, and placenta [20-
27]. However, various media was used for expansion of MSC prior 
to myogenic differentiation including DMEM (7 studies) DMEM low 
glucose (2 studies), α-MEM (3 studies), Media-199 (1 study), Bullet Kit 
(1 study), or an undefined medium enriched with Epidermal Growth 
Factor (EGF) and Platelet Derived Growth Factor-BB (PDGF-BB, 1 
study). Furthermore, the MSC expansion media was enriched with 
various percentages of FBS 2% (1 study), 10% (13 studies), 13% (1 
study) or 15% (1 study) [28]. Supplementation of antibiotics and other 
components varied as well. However, according to the regulations 
of the European Medicines Agency (EMA) and Federal Drug 
Administration (FDA), use of FBS is not acceptable2 or significantly 
restricted3 in any stage of production of cells for a clinical application 
[29]. Therefore conclusion on the therapeutic potential of human MSC 
expanded under experimental and very variable techniques and in 
media containing xenobiotic serum such as FBS or other xenobiotic 
supplements should be drawn with outmost care.

Furthermore, for differentiation of MSC into smooth muscle cells 
rather diverse cocktails of stimuli were reported. Some studies reported 
induction of smooth muscle differentiation with TGF-β and serum, 
while others used a combination of TGF-β, ascorbic acid, and PDGF 
[20-30,22]. One protocol added EGF-1, heparin, corticosteroids, and 
plated the MSC at 75% confluency on fibronectin coated plates, while 

another group plated the MSC on type I collagen and used TGF-β 
and ascorbic acid for induction of differentiation [25]. Again, quite 
variable protocols were reported for induction of smooth muscle cell 
differentiation. This must be taken into account when it comes to an 
evaluation of the differentiation efficacy or the clinical potential of such 
cells.

Moreover, for detection of myogenic differentiation of MSC the 
expression of smooth muscle myogenic markers was investigated on a 
transcriptional level by RT-PCR, and on the protein level by immune 
fluorescence and/or by immune blotting. The marker genes investigated 
include α-smooth muscle actin, calponin, smooth muscle myosin heavy 
chain, transgelin and others [28]. But most studies investigating MSC 
and myogenesis in a pre-clinical context did not consider that smooth 
muscle cells appear in vivo and in vitro as a continuum of proliferative 
and contractile phenotypes [31]. And these phenotypes express 
α-smooth muscle actin, calponin, smooth muscle myosin heavy chain, 
transgelin and other myogenic markers at quite different levels [31]. 
However, protocols to preferably produce a proliferative or contractile 
cell are not yet at hand, but in a clinical context it may be beneficial to 
know if a contractile, proliferative, or perhaps mixed phenotype would 
function better in situ.

As present it seems that many laboratories proceed in their 
research with quite variable cells (bulk MSC or defined subsets), from 
different sources (e.g., bone marrow, adipose tissue, and so on), and in 
most cases with alterable, non-GMP-compliant media and myogenic 
induction protocols (e.g. xenobiotic serum). How can we define the 
optimal type of MSC and the best procedures for future cell based 
therapies with all the variables discussed above?

Human MSC in a Pre-Clinical and in a Clinical Context
For future pre-clinical studies it might be important to establish 

methods that are fully compliant with EMA and FDA regulations, at 
least for the expansion and differentiation of the MSC [32]. According 
to a recent internet search (www.clinicaltrials.gov), the therapeutic 
potential of bulk MSC has been explored in the meantime for a variety 
of diseases and conditions in clinical studies worldwide (Figure 1). In 
November 2012, 252 clinical studies were registered for use of MSC 
in patients. Most studies were dedicated to musculo-skeletal diseases, 
ischemia, the central nervous system and different autoimmune 
diseases [33]. In February 2014, 378 clinical trials using MSC, and on 
24th March 2014, 457 studies were registered (www.clinicaltrials.gov, 
search word “human MSC”). This number does not include trials with 
other types of progenitor- or stem cells (March 2014: 4385 registered 

2in the case of the European Medicines Agency: http://www.ema.europa.eu/ema
3in the case of the US Federal Drug Administration (FDA): http://www.fda.gov

 

Figure 1: Registered clinical trials involving MSC in February 2014 source: 
www.clinicaltrials.gov; search key word: Mesenchymal Stem Cells or MSC.
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trials). At present China is leading the research in terms of clinical 
MSC trials (Figure 1). In most of the trials the regenerative potential of 
human MSC was mainly associated with their production of paracrine 
factors to modulate immune responses or to influence immune 
cells [17,34-36]. This includes suppression of tissue rejection upon 
organ transplantation [37,38]. But in other clinical studies secretion 
of paracrine factors by MSC supported tissue regeneration, wound 
healing, and (re-) vascularization [39-42].

From more than 500 conditions/diseases/entities listed in the 
registry of open MSC studies (www.clinicaltrials.gov), only 54 were 
investigated in greater than 10 trials by various research institutions 
or hospitals. For example studies investigating musculo-skeletal 
conditions/diseases/entities, yielded registered 63 clinical trials 
(Figure 2); for ischemic entities 55 clinical trials, for gastrointestinal 
indications 52 clinical trials, and for illnesses of the central nervous 
system48 clinical trials are listed, respectively. In these cases, the 
statistical power is sufficient to evaluate and compare the results, even if 
a wide variety type of MSC and protocols were employed. But for most 
conditions, diseases or symptoms to be targeted by MSC, less than 3 
trials are registered, and on average only 5 registered trials worldwide 
are dedicated to a given disorder, degeneration or problem (Figure 2). 
In such cases the variations, for example, in preparation of MSC, in 
protocols, including expansion, differentiation, quality measures, and 
application techniques, may make it difficult to evaluate the outcome.

To reduce at least one level of variability in a given pre-clinical 
situation, standardization of cell culture experiments that adhere 
to Good Manufacturing Practice (GMP) guidelines could help to 
reduce the variance of boundary conditions, and thus disburden the 
interpretation of clinical outcome of MSC-dependent studies. GMP-
compliant production of cells includes i) the preparation and expansion 
of cells in media that do not contain xenobiotic components such as 
bovine serum, but use for instance human plasma or serum instead, 

ii) the definition of all steps and manipulations of the cell production 
in Standard Operating Procedures (SOP) from their isolation from the 
patient to the implantation, iii) research on the quality of the product 
including its features (e.g., phenotype), potency (e.g., differentiation 
capacity or cytokine production), purity (including sterility), iv) detailed 
records on all procedures applied during production of the cells, and 
v) storage of back-up samples for follow-up research eventually, and 
data storage for several years. In addition, the enrichment of MSC for 
instance by antibodies or other reagents to generate defined subsets of 
cells prior to their entry into clinical investigations may improve the 
efficacy of treatment. Based on the state-of-the-art results we conjecture 
that more consistent phenotypes of MSC employed in pre-clinical 
studies in combination with GMP-compliant protocols for production 
of the cells, will yield more harmonic outcomes overall.

In addition, for clinical applications cell banking, again under 
appropriate conditions, is an issue as well. Cell banking is a complex 
problem by itself and therefore cannot be discussed commensurably in 
this review, but needs a paper of its own [43-45].

Conclusion
Mesenchymal stem cells provide huge opportunities to initiate, 

facilitate or pursue processes of wound healing and tissue regeneration 
or to halt degenerative processes. But at present the huge opportunities 
are reflected by huge variations in the protocols employed in the studies 
published. Standardizing at least the procedures for definition, isolation, 
expansion and differentiation of MSC will facilitate the evaluation 
of outcome of pre-clinical and clinical studies, especially when the 
number of trials for a given syndrome under way or scheduled in the 
future, is or will be as low as 3-8 trials per illness, which, at present, is 
the majority of registered trials involving MSC.
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