Does BRAF V600E Mutation Enable Vemurafenib to be a Universal Candidate for Treating a Plethora of Cancers?

Ebtissam Alerraqi

Ministry of Health Head and Neck Pathology, Cairo University, Egypt

*Corresponding author: Ebtissam Alerraqi, Ministry of Health Head and Neck Pathology, Cairo University, Egypt. Tel: +86 (20) 8411 1085; Fax: +20235676105; E-mail: ebtissam.erraq@gmail.com

Rec date: Apr 18, 2016, Acc date: May 18, 2016, Pub date: May 20, 2016

Copyright: ©2016 Alerraqi E. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Commentary

Thanks to molecular pathology, BRAF V600E mutation was detected in several head and neck neoplasms as well as ameloblastoma [1], organic malignant thyroid nodules [2], primary and metastatic papillary thyroid carcinoma [3-5].

Neurologically, BRAF V600E mutation was detected in cerebellar anaplastic pilocytic astrocytoma [6], ganglioglioma [7], mesenchymal infantile astrocytoma [8], indeterminate cell tumor and anaplastic dendritic cell sarcoma [9]. Hematologically, BRAF V600E mutation was also detected in multiple myeloma [10] and several leukemias (hair cell, chronic lymphocytic, prolymphocytic and acute lymphoblastic leukaemia) [11-13].

In GIT, BRAF V600E mutation induces gastrointestinal crypt senescence and promotes tumor progression as in gastroenteropancreatic neuroendocrine tumors, colorectal cancer [14-19].

Other miscellaneous targets include melanoma (and conjunctival melanoma) [20,21], Japanese lung adenocarcinoma [22], non-small cell lung cancer [23], metastanenic adeno adenoma (and the associated active hyperplastic periboral nephrogenic rests) [24,25], papillary craniopharyngioma [26], syringocystadenoma papilliferum [27], Erdheim-Chester disease [28,29], pleomorphic xanthoastrocytoma [30] and in in serious ovarian tumors [31].

Taken together, this shared mutation may explain the metastatic map of some cancers and may help pathologists understand confusing syndromes. This was the case when a genodermatosis syndrome associated with BRAF V600E mosaicism has been recently introduced. Similar to Schimmelpenning-Feuerstein-Mims syndrome, this neoplastic syndrome is expected to be driven by mosaicism of HRAS and/or KRAS activating mutations [32].

The immunohistochemical marker VE1 was successfully introduced to appreciate these mutations in the histological specimens of such tumor cells [33-35].

This promoted BRAF V600E oncogene to be a potential target for therapy with variable degrees of success. However, it takes two arms to embrace success. Encoding the “other” arm warrants more therapeutic success as in the case of targeting MAP2K1 and BRAF mutations in hairy cell leukemia [36], BRAF V600E-BRAFV600K in melanoma [37], as well as BRAF V600E-TERT promoter mutations in papillary thyroid cancers [38].

Accordingly, this overview may highlight the significance and efficacy of vemurafenib in treating BRAF-V600E-mutated cancers [37].

References


