Dosimetric Evidences in Radioiodine Customized Hyperthyroidism Treatments

Angelo Ostinelli1*, Marta Duchini1, Giovanna Frigerio1, Angelo Corso2, Roberto Posterli2 and Marco Cacciatori1

1Department of Medical Physics, Ospedale Sant’Anna, Como, Italy
2Department of Nuclear Medicine, Ospedale Sant’Anna, Como, Italy

Abstract

The radioiodine therapy is considered an almost definitive and successful hyperthyroidism treatment, alternative to surgery. Unlike a standardized activity approach is still adopted, a customized dosimetric study offers the significant advantage to take into account the individual variabilities in the structures to be treated. In the present work, some of the current issues relating to customized radioiodine treatment are discussed. The experience acquired during several years of customized hyperthyroidism radioiodine treatments performed at the S. Anna Hospital in Como (Italy) is presented, together with the main results of an extensive follow up analysis.

Keywords: Hyperthyroidism; Radioiodine therapy; Outpatient residual activity; Treatment customization

Introduction

Hyperthyroidism and Graves’ disease treatments require the administration of important 131I activities [1-4] to achieve a nonhyperthyroidism status (i.e., euthyroidism or hypothyroidism) and cause significant patient residuals over the days following the radiopharmaceutical administration [5-9].

The prescription of standard therapeutic activities is still a common clinical practice. The standardized radioiodine activities range normally between 300 and 600 MBq/patient, depending only on the thyroid volume, and they can exceed 1 GBq for serious illnesses.

Otherwise, the customized treatments, based on in vivo kinetic studies, represent a valid choice, allowing the optimization of the administered activity [10-16]. This approach offers an overall reduction of both the patient dose and the consequent radiation protection concern, maintaining the same level of therapeutic effectiveness. The actual Italian guidelines [6,17] suggest that, at the discharge, the patient residual activity should be less than 0.030 mSv/h (in terms of ambient dose equivalent rate), corresponding to a residual activity less than 600 MBq.

In this context, the evaluation of the optimization process, in terms of clinical outcome and radiation protection impact, is of great significance.

The present communication is devoted to these important topics involving pre-therapeutic uptake measurements and functional volume evaluations. The radioiodine treatment procedure adopted at the Sant’Anna Hospital is described and the experimental evidences supporting its clinical effectiveness are also summarized. Since the residual internal activities may be significant, a short consideration regarding the patient radiation protection is also discussed and an innovative method to estimate the radioiodine residual activity is proposed.

Materials and Methods

According to the AIMN-AIFM (Associazione Italiana di Medicina Nucleare - Associazione Italiana di Fisica in Medicina) guidelines [17], the patient-specific bio-kinetic is studied by administering a 131I sodium-iodide track activity (about 2 MBq) in the pre-treatment phase. The radioiodine kinetic is described by the uptake curve: the experimental data are acquired at 2, 24, 96 hours from the administration time, with an adjunctive point at 6 hours for Graves’ diseases. The data were fitted by a bi-exponential mathematical function, according to the two compartment model pharmacokinetics of 131I, by means of a homemade automatic software (PROFit) [18].

The extrapolated functional parameters are: the uptake percentage maximum value \(U_{max} \) and the radiopharmaceutical effective half-life \(T_{1/2-off} \).

To calculate the activity to be administered, two additional parameters must be defined: the functional thyroid volume and the target prescribed dose.

The functional thyroid volume was evaluated by both tomographic SPECT (using 99mTc-pertecnetate) and CT images, acquired by a SIEMENS SYMBIA T integrated diagnostic system. Both images were combined by means of a 3-D fusion software, working independently from the acquisition modalities. An additional estimation of the functional volume was provided by a home-made software developed with MATLAB 2010b and based on the Recovering Iterative Thresholding Method (RIThM) [19].

The prescribed dose was assessed according to specific clinical protocols.

The customized activity is finally computed by applying the following equations [12,17]:

\[
A = 5,829 \cdot \frac{D \cdot m}{U_{max} \cdot T_{1/2-off}}
\]

(Basedow-Graves’ disease).

*Corresponding author: Angelo Ostinelli, Department of Medical Physics, Sant’Anna Hospital, via Ravona 22020 San Fermo della Battaglia (CO), Italy, Tel: (+39) 031 585 9062; Fax: (+39) 031.585.9826; E-mail: angelo.ostinelli@hsacomo.org

Received November 23, 2015; Accepted December 29, 2015; Published January 06, 2016

Copyright: © 2016 Ostinelli A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
activities was about 0.5% and the standard deviation was 5.4%. The
mean percentage excreted activity was 11.3% ± 12.7% at 3-4 hours after
the radioiodine administration, and 43.0% ± 14.8%, about 4 days later.

It seems evident that the absolute values of the excreted activity
would be significantly higher in the case of standardized activity
administration. The same clinical results confirm a significant dose
reduction. As regard to the d_{eff} extent, the mean reduction measured in
the d value (from 82 ± 40 mm after the administration to 34 ± 36 mm
4 day later) can be attributable to the progressive iodine uptake by
the thyroid gland, which reduces both the tissues thickness crossed by
the photons and the related attenuation.

Discussion

This study pointed out the excellent outcome of the treatment
customization and the concomitant reduction of the administered
activity, when compared to the standardized procedures.

On the basis of the theoretical-experimental model, a good
procedure to estimate the residual activity and an effective radiation
protection tool is offered, which significantly reduces the error margins
within an approximate range of ±11%.

These results are more than enough to justify the efforts required to
improve the procedures to customize the hyperthyroidism radioiodine
treatments and to develop a check program to evaluate the residual
activity of treated patients.

References

New York London.
disease and differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging 37:
821-828.
EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl
‘caregivers’ during high-dose outpatient radioiodine therapy. Radiat Prot
Raccomandazioni per la dimissione dei pazienti a seguito di terapia medico
nucleare con 131I al fine della protezione contro i rischi da radiazioni ionizzanti.
AIRMF.
7. IAEA (2009) Release of patients after radioiodine therapy. Safety Reports
Series: 63.
in Graves’ hyperthyroidism: determination of individual optimum target dose. Exp
Clin Endocrinol Diabetes 108: 133-137.
model for prescription of the patient-specific therapeutic activity for radioiodine
specific radioiodine treatment of Graves’ disease with incorporation of treatment
induced changes in thyroid mass. Med Phys 31: 2121-2127.
specific radioiodine treatment of Graves’ disease: a thyroid mass reduction based

The mathematical model to evaluate the residual activity is based
on the relationship between the activity, the ambient dose equivalent
rate $H^*(10)$, the gamma constant I and the source-detector distance (d) [4]. To consider both the iodine distribution and the tissue uptake,
an effective distance d_{eff} was introduced, where $d_{\text{eff}}=d+d_\text{a}$, where d_a is
virtual distance accounting for both the radiation source geometry
and the body tissues attenuation. In this way, both the mean depth of the
α 3D body distribution and the photon-tissues interaction are
evaluated. For this aim, two measurements at known distances (d_a
and d) are required. Applying the inverse square law to the $H^*(10)$ rates
and assuming that:

$$C = \sqrt{\frac{H^*_\text{a}(10)}{H^*(10)}}$$

the mathematical relation between these variables becomes $d_\text{a}d / C$ (d_a
and d) and the activity can be calculated as:

$$A = F^2 \frac{H^*(10)d^2}{A}$$

Where F is expressed by the following relationship:

$$F = (d+d_\text{a})/d$$

This algorithm was validated by a clinical trial including 40 patients,
comparing the administered activities with the calculated ones. All
these cases referred to customized radioiodine therapy: Graves’
disease (19), uninodular (15) and multinodular toxic goiter (6). The external measurements were taken immediately after the radioiodine
administration and before patient voiding (i.e. with the whole activity
inside his/her body), at the hospital discharge (4 hours later) and during
the follow-up (4 days later).

Results

The main outcome evidenced by the retrospective analysis of the
pretherapeutic dosimetry clinical results is the mean reduction in
the administered activities (435 ± 150 MBq/patient) compared to the
standard one. These values represent a significant dose savings, given
the consolidated tendency to use activities close to 500-600 MBq, which
are approximately 20-25% higher than the customized ones.

The clinical response analysis pointed out that all uninodular
and multinodular goiters recovered in a single treatment, while Graves’
disease account for a 83.1% remission percentage. The low frequencies
of Graves’ disease re-treatments and the total remission of nodular
goiters indicate that the customized radioiodine hyperthyroidism
approach is very effective.

The proposed method to evaluate the residual activity provides
an effective tool to check the radioiodine remainder at the patient
discharge. The mean difference between administered and measured

(d multinodular and uninodular pre-toxic and toxic goiter).

where D is the prescribed dose, m is the functional mass, $T_{1/2\text{eff}}$ the
radiotherapeutic effective half-life and U_{meas} the uptake percentage
maximum value.

In this study, 151 patients treated at the Department of Nuclear
Medicine of the S. Anna Hospital have been considered. The specific
thyroid pathologies were: the Graves’ disease (50.9%), the multinodular
(16.6%) and the uninodular (32.5%) pre-toxic and toxic goiter. The
statistical analysis was carried out by both dosimetric and the clinical
response data and performed by the SPSS 20 Statistics software (SPSS
inc. Chicago, IL, USA).

The proposed method to evaluate the residual activity provides
an effective tool to check the radioiodine remainder at the patient
discharge. The mean difference between administered and measured

‘caregivers’ during high-dose outpatient radioiodine therapy. Radiat Prot

in Graves’ hyperthyroidism: determination of individual optimum target dose. Exp
Clin Endocrinol Diabetes 108: 133-137.

model for prescription of the patient-specific therapeutic activity for radioiodine

specific radioiodine treatment of Graves’ disease with incorporation of treatment
induced changes in thyroid mass. Med Phys 31: 2121-2127.

irradiation in 131I therapy of Graves’ disease: a thyroid mass reduction based

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- Increased global visibility of articles through worldwide distribution and indexing
- Showcasing recent research output in a timely and updated manner
- Special issues on the current trends of scientific research

Special features:
- 700 Open Access Journals
- 50,000 Editorial team
- Rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partial), Scopus, RISCO, Index Copernicus, Google Scholar etc.
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission/