Drug Use and Abuse in HIV

Trevor Archer*

Department of Psychology, University of Gothenburg, Box 500, S-405 30 Gothenburg, Sweden

Editorial

Neuropsychological testing has shown that approximately fifty percent of patients presenting HIV, in antiretroviral therapy, are afflicted by mild cognitive impairment (MCI)/HIV dementia, or other types of cognitive impairment as well as in the integrity of motor functioning, which implies that the prevalence was unaltered from the pre- to the potent antiretroviral period, although incidence of MCI had increased and HIV dementia decreased [1-3]. The presence of neuropsychiatry co-morbidity in the pathophysiology of HIV compounds the suffering and detrimental prognosis of those afflicted with a complex relationship between HIV infection and psychiatric co-morbidity [4,5]. For example, HIV-positive status was significantly and independently associated with worse physical and mental health-related quality of life and with an increased likelihood of depression [6]. Heroin administration, with or without smoking and cannabis, has emerged as a significantly destructive dimension of the HIV epidemic in Kenya [7]. HIV-infected smokers lose more years of life to tobacco-related disease than HIV. In cognitive testing, it has been observed that HIV-infected smokers exhibited a lower level of performance than HIV-uninfected smokers on tasks that included tests of working memory, processing speed, and intra-individual variability [8]. Furthermore, Among HIV-infected patients who smoked, neurocognitive performance was negatively associated with quality-of-life and depression ratings. A more deleterious overall symptom burden among HIV patients compared with healthy elder control subjects (n=236) with episodes of more frequent agitation, depression, anxiety, apathy, irritability and nighttime behavior disturbances has been evidenced [9]. In a large study of HIV patients, the majority of study-participants identified smoking correctly as contributing a potential cause of various smoking-related illhealth and ill-being conditions and correctly identified constituents in cigarette smoke, although lacking knowledge concerning the effects of nicotine [10]. Taken together, the consensus emerges that individuals’ self-injecting/administering drugs of abuse are confronted by barriers to their healthcare arising from reasons including co-morbidity, and particularly the case among HIV patients [11]. It should be noted that HIV-1 proteins affect novelty-seeking behavior and modulate addiction-related genes in the context of nicotine-dependent behavior [12,13].

Substance-abusing HIV individuals evidence a greater incidence of brain-related disorders [14-17]; furthermore, there is a strong relationship between drug abusers with HIV and their non-adherence to antiretroviral treatment [18,19]. Additionally, HIV-infected and HIV/hepatitis virus-coinfected patients in opiate replacement therapy require higher methadone dose [20]. Among drug users, the analysis of HIV infection and prevention presents a relationship between drug-use and men-who-have-sex with other men, sexual behavior and sexually-transmitted diseases [21-23]. Illicit drug use among HIV-infected individuals is associated with non-adherence to HIV-medicines with the involvement of social factors modulating drug use and abuse [24-26]. In a study of 875 HIV-positive Japanese male subjects, it was found that 282 participants used addictive drugs (32.2%), with 13.8% administering illicit compounds: amphetamine/methamphetamine 5.4%, dusters/sprays/gas 3.5%, 5-methoxy-N,N-disopropyltryptamine 1.8% and cannabis 1.0% [27], with marked links between HIV diagnosis and drug usage. In this context, the notion that HIV-infections alters structure and functioning in brain reward systems due to infection-drug susceptibility at cellular and molecular sites [28,29], putatively accompanied by neurotoxic signaling [30]. These alterations, accordingly, appear to render the brain systems involved hypersensitive to the rewarding properties of addictive drugs [31,32]. It appears also that methamphetamine-induced associativepathogenesis involving neurotoxicity is exacerbated in the HIV condition [33]. It has been shown also, in vitro, that the exposure of human and rat primary hippocampal neurons to cocaine and HIV-1 Tat reduced synergistically mitochondrial membrane potential and ATP production, as well as affecting neuronal autophagy [34]. Finally, administration of compounds with a psychostimulant action, both illicit and therapeutic drugs, increases dopamine influx into macrophages [35]. In this regard, it has been shown that the effects of dopamine, e.g. through dopamine receptor activation such as use of a psychostimulant drug, exert contribute significant influences upon the pathogenesis of HIV, and vice versa [36-38].

In conclusion, the abuse of addictive drugs disorder and the HIV-infection disease condition appear to exert a mutually, reciprocal, destructive pathophysiology that may only potentiate health loss and worsen the prognosis of those afflicted. Rehabilitation and lifestyle-adaptation must be studied more carefully if the patient situation is to be resolved.

References


*Corresponding author: Archer T, Department of Psychology, University of Gothenburg, Box 500, S-405 30 Gothenburg, Sweden. Tel: +46 31 7864854; E-mail: trevor.archer@psy.gu.se

Received June 16, 2017; Accepted June 16, 2017; Published June 23, 2017


Copyright: © 2017 Archer T. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
14.
and CD4+ lymphocyte count in HIV-Infected Russian women. AIDS Care, pp. 1-5.