Dry Powder Inhaler Devices

Daud Faran Asif*, Hira Munir, Saad Ghafoor, Abrar M, Mahe Nima Nawaz, and Aqeel Ahsan

Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan

*Corresponding author: Daud Faran Asif, Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, India, Tel: 92533643112; E-mail: Daudfaranasif@gmail.com

Rec Date: May 13, 2017, Acc Date: May 24, 2017, Pub Date: May 26, 2017

Copyright: © 2017 Asif DF, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Introduction

Dry powder inhaler (DPI) is a vehicle that is used to transfer drug into body. The efficient delivery of drug into the lungs depends on the performance of drug delivery system and powder formulation. DPI and drug chemistry needs to fulfill safety, efficacy, bio-equivalence and reliability for product approval.

Following factors affect the performance of drug [1-4].

- Mouth piece configuration
- Mouth piece length
- Impaction angle of the powder with devices
- Air inlet size

DPIs provide alternative to metered-dose inhaler (MDI). DPI require a measured dose of powder ready to use by patient use. The drug may be held either in capsule for manual loading or installed in device and ready to use.

Once loaded the patient puts mouth piece of inhaler into their mouth and take a deep inhalation holding the amount of dose delivered is less than few tens of milligrams in a single push. Larger powder may cause cough.

Key Physical Attributes for An Inhaler Delivery System

- Easy to use
- Discreet
- Portable Visible dosing
- Easy dose loading
- Clean and hygienic
- Separate device and doses

What are Dry Powder Inhalers Used for?

DPI are commonly used for the treatment of respiratory diseases such as emphysema, bronchitis and COPD (Chronic Obstructive Pulmonary Disease) although DPI have also been used to treat diabetes mellitus as inhalable insulin. Recently FDA approves Utibron and Seebri Neohaler DPIs [5].

Capsule Based Devices

These DPI devices generally consists of a chamber where capsule is placed [6]. When patient push the button, capsule is broken by external force by the action of installed twist or pins. Powder is released and inhaled by patient (Figures 2 and 3).

Capsule based devices listed below

- Aerolizer
- Rotaheler
- ARCUS
- FlowCaps
- DOTT DPI
- Breeze haler
- Aerohaler
- Podhaler
- Redihaler
- Plastiche mono dose DPI
A simple capsule based consists of barrel shaped cap and body frame. There is a grid between cap and body frame. The cap has two openings one for capsule other for air when patient inhales air during aspiration. The body frame act as mouth piece during inhalation. Grid allow high speed collisions for drug particles.

The vibrator pierced the blisters and release the drug to be inhaled by patient. Micro dose has been developed specially for pulmonary delivery of drugs (Figure 5).

Cartridge Based Device

These devices have a powder chamber to store drug powder. The device has special mechanism to release drug on inhalation. Following are some cartridge based devices [10-12].

- Xectovair
- Ultrahaler
- Spiromax
- Swinghaler
- PADD
- Jethaler
- E flex
- Pulmojet
- VIP inhaler
- NEXThaler

A simple capsule based consists of barrel shaped cap and body frame. There is a grid between cap and body frame. The cap has two openings one for capsule other for air when patient inhales air during aspiration. The body frame act as mouth piece during inhalation. Grid allow high speed collisions for drug particles.

The vibrator pierced the blisters and release the drug to be inhaled by patient. Micro dose has been developed specially for pulmonary delivery of drugs (Figure 5).

Blister Based Device

The blister based DPIs have a ring of aluminum blister inside the DPI device. Each blister contains the dose of powder drug. Dose is indicated by a dose counter installed in DPI. When the blister is burst by applying external force. Then the drug powder is inhaled by air stream when patient takes the breath [7-9].

Micro Dose DPI is an example of blister based devices. It has a piezo electric vibrator that converts electrical energy to mechanical motion. A bliter is bursts before patient breathe. Activation of this vibrator depends on threshold level of air flow inhaled by patient.

Inhaled atropine is being developed as a systemic and pulmonary treatment for the extended recovery period after chemical weapons exposure. Micro dose DPI is used for delivery of Atropine.
Novolizer is an example of a cartridge-based device. It has a button connected with a push lever that is linked with the powder chamber. It can be used multiple times (Figure 6).

Figure 6: Novolizer.

DPI Instruction
- Health care must provide techniques appropriate to use the device.
- Different devices require different techniques to use.
- Nebulizer should be washed after every use.
- Different dosages are required for different diseases and different patients.
- Since every patient has a different lung capacity, the dose should be set with the help of dosage meter. This dosage directly depends on the efficiency of the patient to absorb the drug.
- Do not bite or chew on the mouthpiece.
- You may not taste, smell, or feel the medication, but this does not mean you did not get the medication.

DPI Problems
- DPI irritation may cause cough.
- High moisture may cause clumping of powder.
- Blowing into DPI may blow drug out and induce internal humidity.
- Different inhalation patterns for MDI (Metered dose inhaler).

Inhalation flow (Table 1)

<table>
<thead>
<tr>
<th>DPI</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capsule DPIs (Aerolizer and Cyclohaler—note the HandiHaler is only licensed for COPD so is not considered here)</td>
<td>Formulation is protected from moisture</td>
<td>Need to insert the dose before use; patients need to inhale as fast as they can for as long as they can likely; high dose remaining in the capsule even after the second inhalation; low resistance; patients may inhale too fast, resulting in high oropharyngeal impaction and low lung deposition; patients have more problems using these compared to other DPIs</td>
</tr>
<tr>
<td>Low-resistance DPIs (Accuhaler, Diskhaler, Novolizer)</td>
<td>Easy to achieve a fast inhalation flow, good protection from moisture, dose counter</td>
<td>If patient deteriorates, Novolizer requires a minimum inhalation flow to emit a dose be higher and lung deposition usually lower than other DPIs; inhalation flow is too fast</td>
</tr>
<tr>
<td>Medium/high-resistance device</td>
<td>Low inhalation flow, reduce oropharyngeal flow, and increase lung deposition; good distribution throughout the airways; overall reduced inter- and intra-patient variability; dose counter</td>
<td>Doses stored in a reservoir inside the device; moisture protection; patients may have problems achieving the required minimum inhalation flow</td>
</tr>
</tbody>
</table>

Table 1: Pros and cons of different dry powder inhalers.

Conclusion
DPI is a fast-growing area. These devices play a key role in efficient inhalation of drugs and provide a quick intake of drugs. This review covers basic information regarding DPIs and their mechanism detailed information can be found from patents.

References

J Cell Sci Ther, an open access journal
ISSN: 2157-7013
Volume 8 • Issue 3 • 1000271

