
Research Article Open Access

Industrial Engineering & Management
Ind

us
tri

al
En

gineering &Managem
ent

ISSN: 2169-0316

Kanan et al., Ind Eng Manage 2017, 6:1
DOI: 10.4172/2169-0316.1000210

Volume 6 • Issue 1 • 1000210Ind Eng Manage, an open access journal
ISSN: 2169-0316

Economic Advantages of Utilizing the Integrated Quality Software
Development Model
Mohammad Kanan1*, Gamal Weheba2 and Ramiz Assaf1

1University of Business and Technology, Jeddah, 2136, KSA
2Wichita State University, Wichita, USA

Abstract
New contemporary software development models try to tradeoff among the three major aspects of concern; Cost,

time and meeting customer requirements. One of the recently introduced software development models is the Integrated
Quality Software Development (IQSD). This model builds on the advantages of both the prototyping and waterfall
models and eliminates their limitations. This research presents the development of a cost estimation function that
quantifies the economic benefits of implementing the IQSD model. Numerical analysis indicated that the IQSD model
outperforms traditional development models from an economic standpoint.

*Corresponding author: Kanan M, University of Business and Technology,
Jeddah, and 2136, KSA, Tel: 966122159000; E-mail: m.kanan@ubt.edu.sa

Received February 17, 2017; Accepted March 09, 2017; Published March 13,
2017

Citation: Kanan M, Weheba G, Assaf R (2017) Economic Advantages of Utilizing
the Integrated Quality Software Development Model. Ind Eng Manage 6: 210.
doi:10.4172/2169-0316.1000210

Copyright: © 2017 Kanan M, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Integrated quality software development; Waterfall model;
Prototyping model; Software development lifecycle; Cost estimation

Introduction
Today, there is a huge demand for computerized and automated

business. Software development companies must deliver and produce
software applications that meet customer satisfaction. In addition, both
customers and developers have a high concern for development cost
and time to penetrate the market. Both conventional and contemporary
software development models allow for a tradeoff between cost and risk
of not meeting customer satisfaction [1].

In addition, focusing on clarifying and understanding customer
requirements is very critical since customer expectations increase by
time, and new technologies are becoming more advanced. Spending
more for the needed design efforts up front can lead to a cost reduction
at the end of the software development life cycle. In contrast, incomplete
design efforts can increase the cost of maintenance, as shown in Figure
1 [2].

The Waterfall Development Model has the advantage of low cost
and less time, if and only if customer requirements are completely
understood and clear [3,4]. The Prototyping Development Model
has a good application, which involves customers in the development
process, but this model has no obvious end; in other words, it is an
open-ended process needing a larger budget and more time [5,6].

Integrated Quality Software Development (IQSD)
The only way to obtain customer satisfaction with low effort is

by integrating a model that has the advantages of both the Waterfall
Development Model and the Prototyping Development Model-
combining these two models and using the advantages of clarifying
the voice of the customer as shown in Figure 2. Once the voice of the
customer is clearly understood, developers can then switch to the
Waterfall Model, using its speed to complete the development process,
thus meeting customer requirements and achieving quality.

Customer requirements/analysis

Understanding customer requirements and needs is the core and
pillar of any successful process. To produce a successful software
application, developers need to comprehend and understand all
customers’ voices clearly, since the final output or goal depends on
their wants and desires in order to launch a successful product.

The first step in producing a successful software application
is to define the problem to be solved and then define the intended
customers. Customer requirements are derived from either customers
or developers [7]. Customer requirements involve communication
among these entities and can be categorized into functional and
non-functional. Functional requirements are a subset of the entire
application requirements and describe how the application or the
system will work. Non-functional requirements explain the behavior
of the application. In addition, there are many techniques used for
collecting customer requirements:

One-on-one interviews: This most common technique focuses on
sitting down with customers and inquiring about their needs, in other
words, a direct interview between customers and developers, to avoid
any misunderstanding of customer requirements [8].

Figure 1: Design changes [2].

Citation: Kanan M, Weheba G, Assaf R (2017) Economic Advantages of Utilizing the Integrated Quality Software Development Model. Ind Eng
Manage 6: 210. doi:10.4172/2169-0316.1000210

Page 2 of 6

Volume 6 • Issue 1 • 1000210Ind Eng Manage, an open access journal
ISSN: 2169-0316

Questionnaires: This technique is used when remote customers or
a very large number of customers are involved, or there is no way to
meet customers face to face. This technique must focus on avoiding
redundancy in the large amount of data that is required [9].

Brainstorming: This technique is used when requirements
are ambiguous and there is a need for innovative ideas [10]. First,
developers are asked to meet in a room, start innovative brainstorming
to solve a problem, and then find alternative solutions. Next, developers
prioritize these alternatives. Finally, there is consensus as to the best
alternative to finding an optimal solution.

Selecting the sample application

Selecting the sample application is very important in determining
and judging the throwaway prototype. By sampling, developers can
minimize and limit the possible liability of launching a “sub-par”
product. Furthermore, bugs and defects during sampling can be fixed
with minimum cost and time.

In order to select the sample application for iterative development,
the system (application) must be dividable into subsystems; after
that, a Pareto analysis technique for prioritizing these subsystems
(subapplications) can be applied. Pareto analysis was discovered by
the Italian scholar Vilfredo Pareto and is based on the Pareto principle
where 80% of projects or problems are the result of 20% of causes.

In the stage of gathering requirements, customers should first
determine the most needed subsystems to be developed and delivered,
and then arrange them in ascending order. Based on this process,
developers can prioritize subsystems by using Pareto analysis to
arrange them according to the magnitude of their needs.

Designing prototype for selected application

Prototyping is a tool that explains whether requirements are met or
not. In the prototyping phase, there are several steps, beginning with
the house of quality.

House of quality: Sometimes, customers are not aware of exactly
what they need, or their requirements are ambiguous. The HoQ
technique looks for spoken customer requirements, thus making
invisible requirements visible. This method is capable of capturing any
misunderstanding of customer requirements by using a correlation
matrix between what customers require and how developers design
and engineer characteristics in order to meet customer satisfaction.

After gathering customer requirements, the HoQ can be used to

translate all customer requirements into engineering characteristics to
generate a set of features and functions to achieve customer satisfaction.
By using the HoQ in software development, the quality of software will
be increased and improved [11-14]. As shown in Figure 3, a series of
steps is involved in the construction of the HoQ [13].

Developing a prototype: Early defect detection is recommended
in order for developers to correct and fix any problems before system
release. In addition, early defect detection can minimize the cost of
poor quality. Prototyping enables customers to be involved during the
design phase, so that customers can obtain a clear view and awareness
of their requirements, which in turn will allow them to better share
their ideas. All prioritized engineering characteristics in the HoQ will
be implemented in the initial prototype.

Customer evaluation: By having a throwaway prototype,
customers are ready to evaluate and provide feedback in order for
changes to be made. Customer evaluation can help to implement an
effective output system. Once this has succeeded, the next step is to
deploy the entire development process for the remaining system
subapplication. However, if the customer evaluation is not successful,
then reviewing and updating is necessary.

Reviewing and updating: By using customer feedback,
requirements and specifications can be improved. In addition, all
lessons learned will be documented by using database storage to
comprehend and document all customer feedback to incorporate
the advantages and eliminate defects in order to accelerate the

Figure 2: IQSD model [1].

Figure 3: House of quality [13].

Citation: Kanan M, Weheba G, Assaf R (2017) Economic Advantages of Utilizing the Integrated Quality Software Development Model. Ind Eng
Manage 6: 210. doi:10.4172/2169-0316.1000210

Page 3 of 6

Volume 6 • Issue 1 • 1000210Ind Eng Manage, an open access journal
ISSN: 2169-0316

development process. By using the lessons learned, this model can
implement customer requirements for other subapplications during
the prototyping phase, which runs the risk of not meeting customer
requirements. Furthermore, this process saves time and cost.

Deployment

During this stage, all programming codes will be accomplished and
implemented for the remaining subapplication in order to complete
the entire application.

Testing

After accomplishing all required programming codes, they can be
tested to ensure that neither bugs nor defects are found in matching
customer requirements.

Maintenance

In this phase, the application will be ready to be released, and
customers will be encouraged to send their feedback and comments
relative to the correction of bugs or further improvement.

Software Cost Estimation
Due to the enormous growing demand for software applications, an

appropriate method for cost estimation is needed. This method should
be accurate and precise. There are two categories of software cost-
estimation models: parametric and non-parametric. The parametric
model comes from the statistical analysis of existent data, and the non-
parametric model comes from expert and neural network methods.
Many examples of parametric methods have been used in the software
industry to estimate development cost; this research focuses on the
Application Composition Model of the Constructive Cost Model II
(COCOMO II) created by Boehm [15]

Application composition model

This model is based on the number of application points
(i.e., screens, reports, and 3GL components) [16] and supports a
prototyping-based project. To estimate the cost, the following steps are
followed [16]:

1.	 Calculate object counts by estimating the number of screens,
reports, and 3GL.

2.	 Categorize objects into three levels of complexity-simple,
medium, and difficult-as shown in Table 1, where S, M, and D stand for
simple, medium, and difficult, respectively.

3.	 Based on Table 2, provide a complexity weight for the
number of each cell.

4.	 By adding the weighted objects, count the object points as
one number.

5.	 Estimate the proportion of reused code; then use Equation 1
to calculate the new object point (NOP):

() () 1 00 %

100
× −Object Points reuse

NOP 		 (1)

6.	 Calculate the productivity rate (PROD) using Table 3.

7.	 Finally, calculate the person-months (PM) effort by using
Equation 2:

()NOP 1 %Reuse
PM

PROD
× −

= 			 (2)

Parametric models are the most popular technique. They easily
allow for modifying input data, and refining and customizing formulas.
On the other hand, these models are unable to deal with different
development environments. Furthermore, some experiences and
factors cannot be quantified by using these models. Periodic calibration
using a company’s own data is required to assure accuracy [17].

Cost Estimation Function for the IQSD
This section proposes a new software cost estimation function to

estimate the total efforts of the integrated quality software development
model.

Notation

The following symbols are used in estimating the cost of utilizing
the proposed IQSD model:

Y - Expected level of effort, in person-months, under the application
composition model of COCOMO II

Y1- Cost of iterative development in PM

Y2 - Cost of linear development in PM

a - Learning exponent

X - Expected number of iterations

g - Realization factor

p - Proportion of the sample application

Estimated cost of utilizing the proposed model

The IQSD model is aimed at reducing the risk of not meeting
customer requirements and expectations. This is especially useful
in developing customized (made-to-order) software systems. To
determine the economic consequence of achieving this goal, a cost
function for estimating the level of effort is proposed in Equation 3.
This function accounts for two terms: one for the level of effort Y1
expected during iterative development of a selected proportion of
the system, and the other for the average effort Y2 used during linear
development of the reminder of the system. Both terms are estimated
based on the expected level of effort Y obtained using the application
composition submodel of the COCOMO II. This method is typically
utilized to estimate the cost of employing the waterfall development
model under the assumption of clear and fixed requirements. As such,

Number of Views Screens Number of
Sections

Reports
Number and Source of Data Tables Number and Source of Data Tables

Total <4
<2 serv
<3 client

Total <8
2–3 serv

3–5 client

Total 8+
> 3 serv
> 5 client

Total <4
<2 serv
<3 client

Total <8
2–3 serv
3–5 client

Total 8+
> 3 serv
> 5 client

<3 S S M 0, 1 S S M
3-7 S M D 2, 3 S M D
> 8 M D D 4 + M D D

Table 1: COCOMO II Object Point Levels [16].

Citation: Kanan M, Weheba G, Assaf R (2017) Economic Advantages of Utilizing the Integrated Quality Software Development Model. Ind Eng
Manage 6: 210. doi:10.4172/2169-0316.1000210

Page 4 of 6

Volume 6 • Issue 1 • 1000210Ind Eng Manage, an open access journal
ISSN: 2169-0316

considerably from that initially developed and evaluated. However,
the number of iterations X can be assessed by using the realization
factor g within the (0,1) interval as defined by Montgomery [19], who
indicated that the number of iterations X can be approximated by a
geometric random variable with an average 1/g. Here, the factor g
represents the probability that the initial prototype will successfully
achieve customer requirements. This is a function of the clarity of the
initial requirements and past experience with the same customer. In
general, it is appropriate to assume that projects with a high realization
require less iterations on the average. In other words, development
projects starting with clear and accurate requirements from returning
customers should be assigned values of the factor g close to unity.
Otherwise, initial subjective estimates of g may be used and updated
as records accumulate. An initial value of < 0.25 is appropriate, as
recommended by Yelle [20]. Also, it is important to note that Equation
4 indicates that the lower the realization factor g of the first prototype,
the higher the effect of the exponent α on the estimated cost. This is
expected to compensate for the effect of assuming a constant realization
as a characteristic of the geometric distribution.

Cost of linear development: The cost of linear development Y2
can be estimated using Equation 5, which accounts for the PM effort
required for developing the remaining proportion 1–p of the system. It
is assumed that the development will follow a linear model (waterfall)
with a clear and accurate set of requirements. As shown in Figure 2, this
stage is aided by lessons learned during iterative development. Such
information is typically documented in the house of quality, with clear
indications of user requirements and specific design aspects known to
achieve them. It is assumed that this stage of development can begin
only when a target level of customer satisfaction has been achieved.
Utilizing the estimate Y from the COCOMO II, the linear development
effort is expected to be

()2Y 1 p .Y= − 					 (5)

Total cost function: The total development effort in person-
months of utilizing the proposed model can now be estimated by
adding Equations 3 and 4:

()1PM p.Y.X 1 p .Y−α= + −

()1Y 1 p X 1−α = + −  			 (6)

An examination of Equation 6 reveals that the theoretical minimum
level of PM effort can be achieved when p=0 (equivalently X1-α=1). At
this level, the complete system is developed without iterations at the
baseline level of PM effort. This entails the assumption of an accurate
understanding of a fixed set of requirements as in the waterfall model.
However, should this assumption be violated, then the actual effort
of repeated development using the waterfall model is expected to be
a multiple of Y, depending on the number of developments required
to achieve customer satisfaction. On the other hand, when p=1,
the development will follow the prototyping model at an estimated
effort represented by a multiple (magnitude of X1-α>1) of the baseline
development effort Y. The main advantage of the proposed IQSD
model lies in its ability to represent developers with a middle ground
approach, one in which the risk of failure is reduced at a fraction of the
cost of repeated development.

The expected level of effort PM as a function of the development
model utilized is shown in Table 4, for a development project with an
initial effort Y of 5.0 PM (NOP/PROD=5.0). Values of PM for using the
IQSD model were calculated based on Equation 6 at various levels of
the realization factor g, assuming p=0.25 and α=0.40. For the waterfall

the level of effort Y is considered a baseline estimate of the development
cost expressed as

1 2PM Y Y= + 					 (3)

Due to the advantages of the COCOMO II, as noted in section
3.1, it is assumed that potential users are familiar with the application
composition model and have had more than one chance to calibrate its
parameters.

Cost of iterative development: The term Y1 accounts for the effort
made during iterative development of a selected proportion p of the
software system. This proportion is developed iteratively following the
prototyping model. The resulting prototypes are used to clarify customer
requirements and verify their capabilities. The proportion p is viewed
as a representative sample of the system under development. It can be
determined based on the ratio of its new object point to the estimated
total NOPs of the software. The final result represents a functional
component of the system that can be evaluated and accepted by the
customer. Costs incurred during this iterative development depend
on the selected proportion p and number of prototypes developed and
evaluated, in an effort to clarify requirements. In obtaining an estimate
of such costs, a production progress function is utilized to incorporate
the effect of sequential learning on the cumulative cost. As frequently
utilized in production planning and cost estimation, such a function
requires an estimate of the cost of developing the first prototype
p.Y, and the learning exponent α. The latter can be attributed to the
gains expected from acquiring customer feedback during iterative
development and the accumulation of lessons learned. Consequently,
the expected effort of iterative development can be expressed as

1
1Y p.Y.X −α= 					 (4)

As pointed out by Weheba and Elshennawy [18] it is common
practice to estimate the exponent α in terms of the cost reduction
for double production. Thus, each time the number of iterations
is doubled, the cumulative average effort per iteration is expected
to decrease by 2-α. Utilizing the level of effort from two successive
iterations, an appropriate estimate of α can be obtained. It should be
pointed out that the learning exponent in this application replaces the
reuse rate in the COCOMO II, which is difficult to estimate a priori.
The exponent represents a measure of competency of the software
development team and its ability to translate customer requirements
into technical specifications. With adequate training, higher values of
α can be achieved.

The number of iterations X in Equation 4 is typically unknown
due to the uncertainty involved. It is likely that the first prototype
requires significant changes. And some changes may receive positive
evaluations, while others may be shown to have no or even detrimental
effect on customer satisfaction. The final prototype may differ

Object Type Complexity-Weight
S M D

Screen 1 2 3
Report 2 5 8
3GL Component 10

Table 2: COCOMO II complexity weight of object points [16].

Developers’ Experience and Capability
ICASE Maturity and Capability

Very
Low

Low Nominal High Very
High

PROD 4 7 13 25 50

Table 3: COCOMO II productivity [16].

Citation: Kanan M, Weheba G, Assaf R (2017) Economic Advantages of Utilizing the Integrated Quality Software Development Model. Ind Eng
Manage 6: 210. doi:10.4172/2169-0316.1000210

Page 5 of 6

Volume 6 • Issue 1 • 1000210Ind Eng Manage, an open access journal
ISSN: 2169-0316

and prototyping models, values of PM were calculated based on the
application composition submodel of the COCOMO II. The calculated
value of the average PM when using the prototyping model is based on
a reuse rate of 40%.

The value of the average PM for using the waterfall model,
assuming a constant and fixed number of requirements, is calculated
at the hypothetical level of realization (g=1.0). However, when this
assumption is violated, values of g are used to calculate the expected
number of redevelopments. This is typical of the waterfall model, as
was noted in section 1.

Model performance

Calculated values of the average PM as a function of the
development model used at the expected values of X (or 1/g) are
represented graphically in Figure 4. As shown, all three models result
in the same average level of PM when no iterations are needed. As the
number of iterations increase, the IQSD model tends to outperform
both the waterfall and prototyping models. Section 4.3 represents a
study of the model performance at varying levels of its parameters.

Conclusions
The objective of this paper was to demonstrate the economic

advantages of utilizing the IQSD model. In achieving this objective,
a mathematical cost function for estimating the total effort (person-
months) was developed. This cost function employs the level of
effort obtained by using the application composition model of the
COCOMO II as a baseline, given its popularity. It includes two terms:
the first accounts for the level of effort required during the iterative
development of a selected portion of the system, and the second
accounts for the level of effort required for developing the remaining

proportion. The total cost is estimated based on four factors: the
expected baseline effort (Y) obtained using the COCOMO II, the
proportion of the model selected for iterative development (p), the
realization factor (g), and the learning rate (α). Numerical investigation
of the model performance over practical levels of these four factors was
conducted. The investigation utilized a two-level factorial arrangement
and revealed that the expected total effort is more sensitive to changes
in the realization factor (g) at the low levels of the learning rate (α).
This indicates that high levels of learning are needed when developing
software systems for new customers. It was noted that the model is
not sensitive to changes in the proportion (p) selected for iterative
development. This supports the effective utilization of the HoQ in
translating customer requirements into engineering characteristics. In
other words, users of the proposed development model should be more
concerned with the ability of the selected proportion to reflect as much
of the customer requirements, rather than its relative size [21-26].

The IQSD model could be used in product design where rapid
prototyping and 3D printing are efficiently utilized for iterative
development. This is an area where numerous research efforts have
been made to reduce cost and time to market while improving design
quality. The model is simple, easy to implement, and reinforces the
need for clear communication between developers and customers. It
allows developers to utilize customer feedback during the early stages
of product development and achieve high levels of satisfaction.

References

1.	 Kanan M, Weheba G, Jaradat B (2014) Development of the Audit-Calc Software
System: A Case Study. Journal of Management & Engineering Integration 7: 1.

2.	 Hauser JR, Clausing D (1988) The house of quality. Harvard business review
66: 3.

X g Efforts of Integrated Model Efforts of Prototyping Model Efforts of Waterfall Model (with iterations)
1.00 1.00 5.00 5.00 5.00
2.00 0.50 5.64 8.00 10.00
3.00 0.33 6.17 9.80 15.00
4.00 0.25 6.62 10.88 20.00
5.00 0.20 7.03 11.53 25.00
6.00 0.17 7.41 11.92 30.00
7.00 0.14 7.77 12.15 35.00

Table 4: Comparison of three models based on assumed data.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

1 2 3 4 5 6 7

Ex
pe

ct
ed

 E
ffo

rts

X

The Integrated Model Prototyping Model Waterfall Model

Figure 4: Comparison of PM effort based on development model used.

http://search.proquest.com/openview/2f3806fcbe82a9a9b3879d06dfdd69e8/1?pq-origsite=gscholar&cbl=716332
http://search.proquest.com/openview/2f3806fcbe82a9a9b3879d06dfdd69e8/1?pq-origsite=gscholar&cbl=716332
https://hbr.org/1988/05/the-house-of-quality
https://hbr.org/1988/05/the-house-of-quality

Citation: Kanan M, Weheba G, Assaf R (2017) Economic Advantages of Utilizing the Integrated Quality Software Development Model. Ind Eng
Manage 6: 210. doi:10.4172/2169-0316.1000210

Page 6 of 6

Volume 6 • Issue 1 • 1000210Ind Eng Manage, an open access journal
ISSN: 2169-0316

3.	 Amlani RD (2012) Advantages and limitations of different SDLC models.
International Journal of Computer Applications and Information Technology 1:
6-11.

4.	 Sage AP, Palmer JD (1990) Software systems engineering. Wiley-Interscience.

5.	 Davis AM, Bersoff EH, Comer ER (1988) A strategy for comparing alternative
software development life cycle models. IEEE Transactions on Software
Engineering 14: 1453-1461.

6.	 Jalote P (2012) An integrated approach to software engineering. Springer
Science & Business Media.

7.	 Maiden N (2008) User requirements and system requirements. IEEE Software
25: 90-91.

8.	 Gause DC, Weinberg GM (1989) Exploring requirements: quality before design.
New York: Dorset House Pub, p: 299.

9.	 Foddy W (1994) Constructing questions for interviews and questionnaires:
Theory and practice in social research. Cambridge : Cambridge university
press, p: 228.

10.	Osborn AF (1963) Applied Imagination; Principles and Procedures of Creative
Problem-solving: Principles and Procedures of Creative Problem-solving.
Scribner, p: 417.

11.	Basili VR, Briand LC, Melo WL (1996) How reuse influences productivity in
object-oriented systems. Communications of the ACM 39: 104-116.

12.	Chavez A, Tornabene C, Wiederhold G (1998) Software component licensing
issues: A primer. IEEE software 15: 47-53.

13.	Haag S, Raja M, Schkade LL (1996) Quality function deployment usage in
software development. Communications of the ACM 39: 41-49.

14.	Poulin JS, Caruso JM, Hancock DR (1993) The business case for software
reuse. IBM Systems Journal 32: 567-594.

15.	Boehm B (1995) Cost models for future software life cycle processes: COCOMO
2.0. Annals of software engineering 1: 57-94.

16.	Boehm B, Abts C, Clark B, Devnani-Chulani S (1997) COCOMO II model
definition manual. The University of Southern California.

17.	Lee S, Titchkosky L, Bowen S (2002) Software Cost Estimation. Department of
Computer Science, University of Calgary.

18.	Weheba GS, Elshennawy AK (2004) A revised model for the cost of quality.
International Journal of Quality & Reliability Management 21: 291-308.

19.	Montgomery DC (2008) Design and analysis of experiments. John Wiley &
Sons.

20.	Yelle LE (1979) The learning curve: Historical review and comprehensive
survey. Decision Sciences 10: 302-328.

21.	Weheba GS, Nickerson DM (2005) The Economic Design of -x Charts: A
Proactive Approach. Quality and Reliability Engineering International 21:
91-104.

22.	Sommerville I (2007) Software Engineering. Harlow: Pearson Education
Limited. ISBN 978-0-321-313799.

23.	Pandey P (2013) Analysis of the Techniques for Software Cost Estimation. In
IEEE pp: 16-19.

24.	Lee T, Choi D, Baik J (2010) Empirical study on enhancing the accuracy of
software cost estimation model for defense software development project
applications. in IEEE 2: 1117-1122.

25.	Fine CH, Porteus EL (1989) Dynamic process improvement. Operations
Research 37: 580-591.

26.	Chung L, Sampaio JC (2009) On non-functional requirements in software
engineering. in Conceptual modeling: Foundations and applications. Springer
pp: 363-379.

https://www.ijcait.com/IJCAIT/13/1334.pdf
https://www.ijcait.com/IJCAIT/13/1334.pdf
https://www.ijcait.com/IJCAIT/13/1334.pdf
https://doi.org/10.1109/32.6190
https://doi.org/10.1109/32.6190
https://doi.org/10.1109/32.6190
http://link.springer.com/book/10.1007%2F0-387-28132-0
http://link.springer.com/book/10.1007%2F0-387-28132-0
http://doi.ieeecomputersociety.org/10.1109/MS.2008.54
http://doi.ieeecomputersociety.org/10.1109/MS.2008.54
https://doi.org/10.1002/qre.4680090116
https://doi.org/10.1002/qre.4680090116
https://books.google.co.in/books/about/Constructing_Questions_for_Interviews_an.html?id=tok_OKwywQIC&redir_esc=y
https://books.google.co.in/books/about/Constructing_Questions_for_Interviews_an.html?id=tok_OKwywQIC&redir_esc=y
https://books.google.co.in/books/about/Constructing_Questions_for_Interviews_an.html?id=tok_OKwywQIC&redir_esc=y
https://books.google.co.in/books/about/Applied_imagination_principles_and_proce.html?id=MtZOAAAAMAAJ&redir_esc=y
https://books.google.co.in/books/about/Applied_imagination_principles_and_proce.html?id=MtZOAAAAMAAJ&redir_esc=y
https://books.google.co.in/books/about/Applied_imagination_principles_and_proce.html?id=MtZOAAAAMAAJ&redir_esc=y
https://doi.org/10.1145/236156.236184
https://doi.org/10.1145/236156.236184
https://doi.org/10.1109/52.714771
https://doi.org/10.1109/52.714771
https://doi.org/10.1145/234173.234178
https://doi.org/10.1145/234173.234178
https://doi.org/10.1147/sj.324.0567
https://doi.org/10.1147/sj.324.0567
https://doi.org/10.1007/BF02249046
https://doi.org/10.1007/BF02249046
http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf
http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf
http://www.computing.dcu.ie/~renaat/ca421/report.html
http://www.computing.dcu.ie/~renaat/ca421/report.html
http://dx.doi.org/10.1108/02656710410522739
http://dx.doi.org/10.1108/02656710410522739
https://books.google.co.in/books?hl=en&lr=&id=kMMJAm5bD34C&oi=fnd&pg=PA1&dq=Design+and+analysis+of+experiments&ots=KmqdNx1Iyx&sig=a-r4t8sfBKZPCMxI2N6Z7wzi_pg
https://books.google.co.in/books?hl=en&lr=&id=kMMJAm5bD34C&oi=fnd&pg=PA1&dq=Design+and+analysis+of+experiments&ots=KmqdNx1Iyx&sig=a-r4t8sfBKZPCMxI2N6Z7wzi_pg
https://doi.org/10.1111/j.1540-5915.1979.tb00026.x
https://doi.org/10.1111/j.1540-5915.1979.tb00026.x
https://www.pearsonhighered.com/product/Sommerville-Software-Engineering-Update-8th-Edition/9780321313799.html
https://www.pearsonhighered.com/product/Sommerville-Software-Engineering-Update-8th-Edition/9780321313799.html
https://doi.org/10.1109/ACCT.2013.13
https://doi.org/10.1109/ACCT.2013.13
http://ieeexplore.ieee.org/document/5440235/
http://ieeexplore.ieee.org/document/5440235/
http://ieeexplore.ieee.org/document/5440235/
https://www.gsb.stanford.edu/faculty-research/working-papers/dynamic-process-improvement
https://www.gsb.stanford.edu/faculty-research/working-papers/dynamic-process-improvement
https://pdfs.semanticscholar.org/2d1e/79e057a9111ea6863378ffeca526a4e41c5f.pdf
https://pdfs.semanticscholar.org/2d1e/79e057a9111ea6863378ffeca526a4e41c5f.pdf
https://pdfs.semanticscholar.org/2d1e/79e057a9111ea6863378ffeca526a4e41c5f.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Integrated Quality Software Development (IQSD)
	Customer requirements/analysis
	Selecting the sample application
	Designing prototype for selected application
	Deployment
	Testing
	Maintenance

	Software Cost Estimation
	Application composition model

	Cost Estimation Function for the IQSD
	Notation
	Estimated cost of utilizing the proposed model
	Model performance

	Conclusions
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	References

