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Abstract
Objective: To use multivariate statistical analysis to process the electroencephalographic (EEG) signal recorded 

during the solving of language and mathematics tasks by two groups of children, with (LD) and without (NO) learning 
disabilities, and thus, to understand the possible difference in the neural circuit organization between these two 
groups.

Methods: We processed the EEG data using an algorithm that summarize all the information about the possible 
sources of the EEG signal, recorded by each of our 20 electrodes, into a unique variable. Factor Analysis (FA) was 
used to study the covariance of this variable and Linear Discriminant Analysis (LDA) to separate samples of distinct 
groups.

Results: FA disclosed 3 factors to group NO and 2 for group LD. The electrodes, grouped on each factor of each 
group are quietly different. LDA disclosed a frontal/posterior differentiation between NO and LD groups, grouping 
mainly the frontal and central electrodes on NO group and the occipital and posterior temporal electrodes on the LD 
group.

Conclusion: Results clearly differentiate both groups of children, showing a stronger participation of (pre)frontal 
and central regions of the brain on normal children, whereas learning disabled children showed the use of frontal, 
temporal and occipital areas.

Keywords: Electroencephalogram; Brain mapping; Dips; Factor
analysis; Linear discriminant analysis; Learning disability

Introduction
Neurodevelopment disorders are experienced by at least 10% of 

school-age children being important causes of school evasion [1-9]. 
Specific impairment of oral and written language, dyslexia, dyscalculia, 
attention deficit and hyperactivity disorder (ADHD), social dysfunction, 
oppositional defiant disorder and conduct disorder are among the most 
common neurodevelopment disorders [4,6,9,10].

Both, genetic and environmental factors are associated with these 
neurodevelopment disorders [1,4,5,8,11-19]. There are clear evidences 
that specific language impairment and dyslexia are genetically 
associated with neurodevelopment disorders [6]. However, Tomblin, 
Smith and Zhang [19] have found that parental education, tobacco 
smoking and breast feeding were also related to differences between 
normal and affected children. Specific language impairment may 
interfere with social cognition [9], but social dysfunction is also 
dependent on genetics [13] and environment [4]. Conduct disorders 
and ADHD are associated with dysregulation of frontal-subcortical-
cerebellar circuits [1,3] promoted by genetics [13,17], as well as pre and 
post-natal events [4,18,19]. Prenatal stress and childhood maltreatment 
predict individual differences in cortisol in the first day of school and 
in pre-adolescent children [20,21], influencing the development of the 
hypothalamic-pituitary-adrenal and serotonergic systems.

We suppose that the cognitive tasks presented to the children 
in school, for instance reading and calculating, will be solved not by 
some specific brain area, but by the combination of those most suitable 
neurons. In other words, according to its connectivity, membrane 
properties, and DNA-protein reading, each group of neurons will be or 
not part of the neural processing responsible for the solution of the task, 
and those involved will be recruited in specific time and for a specific 
duration. It means that the solution of the tasks are not dependent on 

isolated brain areas but by the neural network connectivity modulation 
[22,23]. All the brain is a complex system of information processing 
and behavior generation. Every millisecond our neurons may be 
receiving or transmitting (firing) electrical impulses by means of ion 
changes between the inner matter of the neuron and its surrounding 
environment [24,25]. We believe that what really change over time, 
during any task solution, is how each group of neuron is firing or is 
being fired, by alteration of the frequency of its firing.

Aiming to use the EEG information, not to look for specific 
brain area activation, but to understand how the different areas of 
the brain may be connecting each other during each moment of any 
cognitive task solution, we developed an algorithm based initially on 
the Distributed Intelligent Processing System (DIPS) theory. DIPS was 
first developed in the field of Artificial Intelligence to formalize systems 
comprised of multiple agents that have individual expertise in solving 
defined problems but gain the ability to solve tasks of greater complexity 
through cooperation. DIPS intelligence is, therefore, a function of the 
types of tools used by its agents, as well as how and for what purpose 
these tools are used [26-30].
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More specifically, we may propose that in the brain, DIPS 
knowledge is distributed among its agents or neurons according to 
their specialization, and is primarily encoded by the relationships or 
connections shared by these agents or neurons. In the case of memory, 
for instance, some agents (e.g., sensory neurons) are responsible for 
storing data (e.g., sensory information) while others (e.g., hippocampal 
neurons) keep track of the relationships between these pieces of data by 
storing information about the associations between these agents (e.g., 
connecting the different sensory neurons). In the case of procedural 
knowledge, some agents relate data (e.g., sensory or memorized 
information) to their processing tools (e.g., motor actions). If we take 
the above assumptions, the complexity of a DIPS knowledge in the 
brain will depend on the number of specialized neurons, but most of all 
on the complexity and versatility of their connections.

Task distribution is an interactive process between an agent with 
a task to be executed and a group of agents that may be contributing 
to task execution. Many of these agents may propose similar but not 
identical solutions to a given task, either because they may share 
information from different sources or because they use different tools 
to handle the same piece of information. This redundancy supports 
the robust degradation properties of DIPS because agents may be 
lost without greatly affecting the system’s performance. However, this 
same redundancy may also cause conflict, which, in turn, requires 
task solutions to be carried out under the guidance of special rules 
implemented by specialized agents [7,28,31].

Material
Two sample groups of children were selected. One from a public 

school of the city of Mogi das Cruzes (Sao Paulo, Brazil), having 
learning difficulty complaints by their teacher, a history of negative 
factors during pregnancy and deliverance, disclosed by a anamnesis, 
and a continuous (more than 6 months) lower performance in standard 
academic tests than expected for their school age. The other group was 
selected from a private school on the city of Sao Paulo, where none of 
the students had neither learning difficulty complaint, nor negative 
occurrences on the anamnesis, and all accomplished with the academic 
tasks of their grade.

LD group was composed of 42 students and NO group of 24 
students. The age of the LD children has varied from 10 to 14 and of 
the NO children from 8 to 12. This age difference occurred owing to the 
school gap of LD children. All children in this study had a consent form 
signed by their parents and saved on the schools.

Methods
Here, we propose the use of multivariate statistical analysis to 

process the electroencephalographic signal recorded during the solving 
of a set of language and mathematics tasks by two groups of children, 
one with learning disabilities (LD) from a community in condition of 
social and economic vulnerability, as considered by the municipality 
authorities, and other with no learning difficulties (NO) from a regular 
community. A small sample of these groups was already studied in our 
previous work focusing on reading skills [26].

Children solved the tasks while their EEG signals were registered 
using 20 electrodes placed according to the 10/20 protocol; impedance 
below 10 Kohm; low-pass filter 50Hz; sampling frequency of 256 Hz 
and 16 bits of resolution. Statistical analysis of their performance and 
the recorded EEG signals provided the data to investigate the linguistics 
and mathematics abilities, generating whole brain mappings based on 
the entropy of each EEG electrode [26,27,32] and on non-supervised 

and supervised multivariate techniques. The technique of EEG 
summarization is not new and has been successfully applied to study 
neural plasticity [32], arithmetic brain processing [27], dermatological 
treatment satisfaction [33], election decision making [34], DIPS model 
[35] and, more recently, moral dilemma [36], medical diagnosis [37] 
and reading process [26].

Both groups had to solve different kind of tasks in Portuguese 
written language and mathematics. Portuguese tasks included word 
and phrase reading while mathematics included quantity/algorism 
association, sum and subtraction of tens and unities.

EEG signals summarization 
The activity v(ei ,t ) recorded by a set of electrodes  ei is a weighted 

sum ( ),(*
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) of the electric currents i(sl ,t) generated by different sets 

si of source neurons that are being activated at different cortical areas 
at time t. Correlation analysis of the electrical activity v(ei ,t ) recorded 
by the different electrodes ei may be used to summarize information 
provided by each electrode ei about all involved sources si into a single 
variable. 

The correlation coefficient ri,j calculated between the activities, vi 
(t) , v j (t) recorded by ei , e j  is expected to be highly dependent on the 
wi , w j weights determining the contribution of sl to these recorded 
activities. If wi , w j are high, then source sl is an important determinant 
of both vi (t) and v j (t), increasing the determination coefficient jir ,  
whenever it is active. If two different sources sl , sm are influential upon 
ei , e j respectively, then ri,j approaches 1 or -1, if they are positively 
or inversely correlated. The closer the coefficient is to either −1 or 1, 
the stronger the correlation between the variables. Because of this, the 
determination coefficient jir ,  of the correlation calculated for v(ei ,t ), 
v(e j ,t )is, here, equal to jir , .

The determination coefficient jir ,  increases if sl , sm  are either 
near to both ei , e j or are synchronized. In contrast, if all sources that 
are influential upon vi (t) , v j (t) are silent, then jir ,  approaches 0.5. In 
this theoretical context, the highest uncertainty about the information 
provided by ei , e j  about sl and sm occurs when jir ,  approaches 0.5, 
and it is minimum when jir ,  approaches 1. 

Because of this, Rocha et al. [27,32,35-37] proposed that H (ei ) 
provided by ei about the sources sl is the expected value E(I (ri, j )) of 
the information I (ri, j ) provided by jir , . The amount of information 
H (ei ) provided by electrode ei about the sources sl is assumed to 
be a function of the determination coefficient ri, j of the correlation 
between v(ei ,t ) and v(e  ,t ). Now, in the same line of reasoning used 
by Shannon [38] to define the amount of information provided by a 
random variable, it is proposed that the informational equivalence H 
(ri , j ), is calculated as:
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the informational equivalence measured by ir  is calculated as 

[ ])1(log)1()(log)( 22 iiiii rrrrKrH −−+=                                                 (3)	
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and it quantifies the information provided by ei concerning that 
provided by all other e j.    

Finally, the quantity of information provided by ei about the sources 
si involved in solving the present tasks is calculated as:

	
19

i i i, j
j 1

H(e ) [H( r ) H(r )]
=

= −∑ 		                                  (4)

In this context, the information H (ei ) provided by electrode ei 
about the sources sl activated for task solution is calculated from all 
H (ri , rj ) in comparison to H (ri ). If H (ri , rj ) is equal to the mean 
information )( irH  provided by all other (19) electrodes e j, then v(ei 
,t ) compared to v(e j ,t ) did not reduce the uncertainty about sl being 
involved in the task solution. In contrast, if H (ri , rj ) approaches 
zero, then all fundamental sources sl for the activity recorded by ei are 
most likely involved in the task solution. In this line of reasoning, H 
(ei )measures the information provided by the electrode ei  about all 
sources sl activated by a given cognitive activity. Thus, H (ei )provides 
information about the spatial and temporal distribution of these 
sources sl, showing how different sets of neurons may enroll themselves 
in a widely distributed network to solve a task [35]. Another interesting 
H (ei ) property is that it summarizes information about all sources 
si into a single variable, simplifying further analysis (factor and linear 
discriminant analysis) involving behavioral and neural variables.

Figure 1 shows an illustrative example of an EEG summarization 
calculated in the experiments for the C3 electrode.

Factor Analysis

We have used Factor Analysis (FA), a well-known multivariate 
statistical technique, to describe the association between the entropy 
values of the electrodes in a nonsupervised way. The main idea behind 

FA is to disclose the relationships among the original variables using a 
few unobservable random ones, called common factors, to adequately 
represent the data [39].

In particular, let a Nxn data matrix X be composed of input N signals 
(or trials) with n variables (or electrodes). This means that each column 
of matrix X represents the EEG summarization of a particular electrode 
H (ei ) observed all over the N trials [26]. Let this data matrix X   have 
sample correlation matrix R with respectively Ρ and Λ eigenvector and 
eigenvalue matrices, that is, 

	 ],...,,[ˆ
2211 mm pppL λλλ= 	   		                 (5)

It is a proven result that the set of m (m ≤ n) eigenvectors of R, 
which corresponds to the m largest eigenvalues, minimizes the mean 
square reconstruction error over all choices of m orthonormal basis 
vectors [40]. Such a set of eigenvectors, scaled by the square root of the 
corresponding eigenvalues [39], and calculated as: 

],...,,[ˆ
2211 mm pppL λλλ=  			                 (6)

is known as the factor loadings of the data matrix X estimated by 
the principal component method.

The estimated factor loadings Lˆ of X can be rotated in order to 
improve the understanding of the factors. In this way, Fˆ = LˆT is a n × 
m  matrix of rotated estimated factor loadings, where T is assumed to be 
an orthonormal m × m rotation matrix. Ideally, we would like to see a 
pattern of loadings where each subset of electrodes is highly represented 
by a single factor and has negligible coefficients on the remaining 
ones, allowing an interpretation of the EEG brain mappings with no 
overlappings. Thus, our natural choice of the orthonormal matrix T has 
been based on the varimax criterion proposed by Kaiser [41], which has 
been followed by others in analogous works [7,27,32,34].

Figure 1: An illustrative example of an EEG summarization calculated in the experiments for the C3 electrode. All the calculations have been made using the previous 
2 seconds immediately before the decision making. 
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Therefore, those F =  f1    f 2 f m can then replace the initial n  
variables on m  rotated common factor loadings where not only the 
association between the EEG electrodes would be most expressive in 
terms of variance information, but also the brain mappings would be 
the most independent ones given by the perpendicular rotation T.

Linear Discriminant Analysis
The association between the entropy values of the electrodes H (ei ) 

in a supervised way has been performed here using Linear Discriminant 
Analysis (LDA) and the technique of hyperplane navigation [42-44]. 
The primary purpose of LDA is to separate samples of distinct groups 
by maximizing their between-class separability while minimizing their 
within-class variability. Let the between-class scatter matrix Sb be 
defined as 

T
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and the within-class scatter matrix wS  be defined as
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where xi, j is the n − dimensional signal (or trial) j from class π i , Ni 
is the number of trials from class π i, and g is the total number of classes 
or groups. The vector ix and matrix Si are respectively the unbiased 
sample mean and sample covariance matrix of class π i [40]. The grand 
mean vector x  is given by
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The main objective of LDA is to find a projection matrix Wlda that 
maximizes the ratio of the determinant of the between-class scatter 
matrix to the determinant of the within-class scatter matrix (Fisher’s 
criterion), that is, 

	
||
||

maxarg
WSW
WSW
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T

lda = 		                                (10)

	 The Fisher’s criterion described in equation (10) is maximized 
when the projection matrix Wlda is composed of the eigenvectors of 

bw SS 1−  with at most (g − 1) nonzero corresponding eigenvalues [40,45]. 
In the case here of a two-class problem, the LDA projection matrix is in 
fact the leading eigenvector wlda of S −1 S .

Once the leading eigenvector wlda has been computed, we 
can move along its corresponding projection vector and extract 
simultaneously the discriminant differences captured by the entropy of 
each EEG electrode. In mathematical terms, assuming that the spreads 
of the sample groups follow a Gaussian distribution, this procedure of 
navigating on the most discriminant projection [44] can be generated 
through the following simple expression:

ldaiji wjxy ⋅+= σ, 		   	                               (11)

where j ∈{−3,−2,−1,0,1,2,3} and σ i is the standard deviation of each 
sample group i ∈{1,2}.

Results
A specific anamnesis, which involved the relatives of the children, 

was used on a previous moment to investigate the possible neurological 
disturbance of the LD sample group. This anamnesis considered 

environmental factors that could have impaired brain development 
from the fetal age until early childhood. The LD group particularly 
exhibited statistical significant occurrences such as motherly high stress 
index during pregnancy, use of tobacco and alcohol, low birth weight, 
among others, suggesting their difficulties in learning due to possibly 
neurological disturbances.

Principal Component Analysis (PCA) was used to study the 
covariance of the variable H (ei ) calculated from the data generated 
by the coordinate activity of neurons belonging to the distinct neural 
circuits involved in solving a cognitive task, being each of these circuits, 
as proposed here, represented by a distinct component of the PCA 
analysis which eigenvalue is higher than 1. Running the Factor Analysis 
in the space of variables H (ei ) grouped by the PCA, we maximize the 
covariance between those electrodes of each component by means of 
its eigenvalue. Finally, using the Varimax rotation, we are able to better 
disclose the association between the EEG electrodes supposed to be 
associated to each neural circuit.

Figures 2 and 3 describe the rotated estimated factor loadings of 
the neural organization of the NO and LD sample groups, respectively.

Figure 2: Brain mapping of the most expressive factor loadings (red to blue) of 
the NO sample group with corresponding eigenvalues greater than 1.

Figure 3: Brain mapping of the most expressive factor loadings (red to blue) of 
the LD sample group with corresponding eigenvalues greater than 1.
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In NO group Factor Analysis disclosed 3 factors with eigenvalue 
higher than 1, while NO group disclosed 2 factors with eigenvalue 
higher than 1. The first NO factor associated bilateral electrodes on 
occipito-temporal regions (T3, T5, T5, T6, O1 e O2) and PZ, while NO 
group second factor disclosed frontal-central areas bilaterally (FP1, 
FP2, F3, F4, F7, F8, Fz, C3, C4, Cz), and finally third factor disclosed 
just the medial occipital and parietal electrodes (Oz, Pz).

Factor Analysis on LD group entropy values grouped, on the first 
factor, electrodes on occipital and posterior temporal regions (O1, O2, 
T5, T6), besides medial parietal area on Pz. The second factor disclosed 
the association between frontal and temporal areas bilaterally (F3, F4, 
T3, T4) plus right central electrode C4.

Lastly, the Linear Discriminant Analysis (LDA) brain mapping 
is shown in Figure 4. Factor Analysis looks for the most expressive 
association between the EEG electrodes in terms of variance 
information in a non-supervised manner, but it does not disclose the 
variables that discriminate the most between possible different groups 
of individuals. So we brain mapped the LDA eigenvectors calculated 
for both group of children (LD, NO), showing the regions of the brain 
which activity may had discriminate the most between student with 
and without learning disabilities.

LDA hyperplane navigation has disclosed a frontal/posterior 
differentiation between NO and LD, grouping mainly the frontal and 
central regions of the electrodes T3, C3, F4, C4 on NO group and the 
occipital and posterior temporal regions of the electrodes Oz, O2, T5 
and T6 on the LD group (Figure 4).

Discussion
Increased EEG power in the theta band at rest (4–8 Hz) is one of 

the most consistent and robust neural abnormalities in ADHD [46]. 
Decreased levels of absolute beta and gamma power were also identified 
in ADHD children, compared to controls [47]. Answering to visual 
and auditory continuous performance tests, ADHD patients showed 
significantly higher theta relative power, lower beta relative power, 
and higher theta/beta ratio. These results led the authors to propose 
that cortical hypoarousal effects on the fronto-striatal circuitry may be 
implicated in the inhibition of premature responses [48]. 

On the study of Hasko et al. [49], control group revealed greater activity 
over left fronto-temporal electrodes, whereas the N300 ERP component 
was distributed bilaterally in the group of children with dyslexia. Compared 
to control children, dyslexics also showed lower amplitude of parietal, 
occipital, and temporal alpha 2 and alpha 3 sources [50]. 

Soltész et al. [51], on their work about dyscalculia, found between 
400 and 440 ms a focused right-parietal ERP distance effect in controls, 

but not in children with dyscalculia during digits identification. Soltész 
and Szűcs [52], using temporal principal component analysis on ERP data, 
found hemispheric differences in the first temporal component and group 
differences in the second temporal component, suggesting executive 
control differences between children with dyscalculia and controls.

All these works and many others exhibited differences between 
normal and learning-disabled children in terms of brain regions 
dysfunction measured by its frequency domain or its ERP response. 
Here, we first processed the EEG data using an algorithm that considers 
the brain as a complex network comparable to a Distributed Intelligent 
Processing System (DIPS), summarizing thereby all the information 
about the possible sources of the EEG signal, recorded by each of our 20 
electrodes, into a unique variable H (ei ), corresponding to a 2 seconds 
window of cognitive processing. 

Factor Analysis
While Factor Analysis disclosed 3 factors (Figure 2) from NO 

group H (ei )data, it found just 2 factors (Figure 3) from LD group. 
Each factor is supposed to represent a specific neural circuit. Thereby, 
we may assume that NO group organized its neural network on 3 
distinct manners consecutively, while LD group did it only on 2 distinct 
manners. Here, we replicated our results from a smaller sample of these 
same groups on reading tasks [26], where we also found 3 factors for the 
control group and only 2 for the learning-disabled children.

Other difference between the neural networks of both groups is 
how each factor is composed. While NO factors show the association 
between (pre)frontal and central areas, LD factors show association 
between frontal, temporal and occipital areas. Studying frequency 
domain analysis, Fernández et al. [53] found that their control group 
showed greater power increases in frontal regions than the learning 
disabled group, in the frequencies between 1 and 6 Hz from 300 to 700 
ms. LD children also showed shorter durations, than the control group, 
of the decreases in power of alpha and beta rhythms in the occipital 
regions in frequencies between 8 and 17 Hz from 450 to 750 ms. 
Authors interpreted it as a deficit in attention and memory retrieval. 

Linear Discriminant Analysis
From our LDA results, it may be proposed that what most 

discriminate the normal group from learning disabled children is 
activity over frontal and central neural circuits, whereas LD group may 
be discriminated by a more posterior activity (Figure 4). Hämäläinen 
et al. [54] found that children at risk for reading problems, compared 
to control children, showed a negative voltage shift at 107–215 ms in 
frontocentral areas, the difference being originated from the left and 
right auditory cortices.

Figure 4: Brain mapping of the most discriminant entropy values (red to blue) captured by the LDA hyperplane navigation. From left (group of NO samples) to right 
(group of LD samples).
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