
Volume 2 • Issue 3 • 1000139J Environ Anal Chem
ISSN: JREAC, an open access journal

Pai et al., J Environ Anal Chem 2015, 2:3 
DOI: 10.4172/2380-2391.1000139

Research article Open Access

Effect of Heating on the Color Formation Reaction in the Murphy and 
Riley Method for the Determination of Phosphate in Natural Waters
Su-Cheng Pai1*, Tzu-Yuan Wang1, Tien-Hsi Fang2 and Kuo-Tung Jiann3

1Institute of Oceanography, National Taiwan University, Taipei, Taiwan
2Department of Marine Environmental Informatics, National Taiwan Ocean University, Keelung, Taiwan
3Department of Oceanography, National Sun Yat-Sen University, Kaohsiung, Taiwan

*Corresponding author: Su-Cheng Pai, Institute of Oceanography, National 
Taiwan University, Taipei, Taiwan, Tel: 886922227358; E-mail: scpai@ntu.edu.tw 

Received April 30, 2015; Accepted May 12, 2015; Published May 20, 2015

Citation: Pai S, Wang T, Fang T, Jiann K (2015) Effect of Heating on the Color 
Formation Reaction in the Murphy and Riley Method for the Determination of 
Phosphate in Natural Waters. J Environ Anal Chem 2: 139. 
doi:10.4172/2380-2391.1000139

Copyright: © 2015 Pai S et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Phosphate; Spectrum; Heating; Color formation reaction

Introduction
The molybdate-ascorbic acid method developed by Murphy and 

Riley [1] for the determination of phosphate in natural waters has 
been widely adopted in many scientific disciplines [2-4]. When the 
manual procedure is converted to an automated operation, heating is 
frequently applied to enhance the rate of color formation reaction for a 
fast throughput. For example, APHA/AWWA/WEF Standard Methods 
have suggested an on-line 37°C water bath [5]; Johnson and Petty [6] 
have employed a 50°C bath; and in an extreme case, a 95°C reactor 
has been used by Yuchi et al. [7]. Although heating can effectively 
improve the reaction rate [8,9], some scientists have encountered 
other problems. Benson et al. [10] have reported a phenomenon where 
the peak signals decreased significantly when the bath temperature 
was raised up to 60°C; Drummond and Maher [11] and Zhang et al. 
[12] have both observed noticeable silicate interferences at elevated
temperatures. They have suggested that the determination should be
preferably performed at room temperature.

However, we have encountered a dilemma on whether or not one 
should apply an on-line heating device. On our past expedition cruises, 
seawater samples were collected from different depths (e.g. from 
surface to >3000 m deep with original temperatures from 30°C down 
to 2°C) and all nutrients including phosphate were measured on-board 
by a flow injection system within 1 hour after retrieving the sampler 
to the deck. The use of an on-line heating bath could largely minimize 
the large temperature differences between samples and standards, but 
the uncertainty induced has yet been well evaluated. In order to clarify 
this problem, a series of heating experiment was carried out at higher 
concentrations (30-50 µM) in order to magnify the variation. The results 
will provide field analysts a quantified measure of the heating effect so they 
are able to choose a proper way to avoid such an uncertainty.

Material and Methods
Reagents

Mixed reagent (HMoSb): A 200 mL molybdate solution 
(containing 5.1 g of ammonium molybdate heptahydrate) was poured 
gradually while stirring into a beaker filled with 180 mL of conc. 
sulfuric acid, followed by mixing a 100 mL of the antimony solution 
(containing 0.5 g of potassium antimony tartrate). The final volume 
was made up to 500 mL. 

Ascorbic acid reagent (ASC): An amount of 13.2 g of L-ascorbic 
acid was dissolved in 250 mL of double distilled water.

Phosphate standard: A 10 mM P stock solution was prepared by 
dissolving 0.1361 g of KH2PO4 in 1 L of double distilled water. Diluted 
working standards were prepared from this stock solution.

Spiked seawater: A filtered surface seawater (salinity=33.4 psu) 
was prepared previously. The original concentration was <0.05 µΜ P. 
An aliquot of 3 mL of the stock standard solution was added to this 
seawater to make a final volume of 1 L to give a spiking concentration 
of 30 µΜ.

Reagent strengths: The reagent strengths used in this study were 
slightly different from the original recipe [1] with a lower acidity to 
minimize Si interference and higher Sb3+ and ASC concentrations to 
increase the reaction rate [11,12]. When 2 mL of HMoSb reagent and 
1 mL of ASC reagent are added to a 25 mL aliquot of sample, the final 
reagent strengths are: [Mo]=4.13 mM; [H+]=309 mM; [Sb3+]=0.213 
mM; [ASC]=10.7 mM, with a [H+]/[Mo] ratio of 74.8.

Apparatus

A Shimadzu UV1800 spectrophotometer was equipped with 
a temperature-controlled cuvette holder (Shimadzu T-83400-52) 
connected to a thermostat water circulation bath (Firstek B401H) with 
a 1 kW heater and a 700 W cooler (Figure 1). A dome-type flow cuvette 
(Hellma, 1 cm length, 450 µL capacity) was used. The sample solution 
was placed in a reaction bottle immersed in a second thermostat water 
bath (Firstek B206) and controlled by a 750 W heater. The sample could 
be quickly taken up by a peristaltic pump to fill up the cuvette in 10 s.

Experiment designs

Exp-1 Absorption spectra: A fully-developed blue color solution 
was transferred to the cuvette for scanning from 950 to 650 nm at 
different temperatures. The absorbance at 880 nm was recorded along 
a time scale while the thermostat was heated up step-wisely from 15 to 
90°C, then cooled back down to 15°C.
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Exp-2 Color formation at fixed temperatures: Both thermostats 
were adjusted to the same temperature. The reagent added sample 
was immediately transferred to the flow cuvette then trapped for 
observation of the formation curve.

Exp-3 Color formation at elevating temperature: The starting 
temperature was set at 25°C but the cuvette holder was heated up to 30-
90°C at 15°C intervals. The sample added with reagents was transferred 
immediately to the heated flow cuvette. The color formation curve 
obtained this way was under a temperature-ramping condition.

Results and Discussion
Spectra at different temperatures

In Exp-1 two color-fully-developed phosphomolybdenum blue 
solutions (50 µΜ in freshwater and 30 µΜ in seawater) were scanned 
at different temperatures and the overlapped absorption spectra are 
shown in Figure 2. The change of spectra due to temperature was 
significant, and a knot at a wavelength of 935 nm was found for both 
media. On the left-hand side of this knot the absorption patterns 
became lower as temperature increased, and vice versa. 

The observation on the effect of changing temperature to the molar 
extinction coefficient at 880 nm is shown in Figure 3. The blue colored 
solution was again transferred to fill the cuvette. The cuvette holder 
was first cooled down to 15°C, and then the thermostat was heated 
up in a step-wise manner at 5°C intervals. As temperature increased, 
the absorbance decreased like a mirror image. The molar extinction 
coefficient at 880 nm was found to be 23400, 22850, 22600, 21700 
… 19800 M-1cm-1 at 15, 25, 30, 50 … 90°C, respectively. The slope of 
variation was found to be -48 M-1cm-1°C-1 (Figure 4) or a relative trend 
of -0.22 %°C-1 w.r.t. the absorbance value at 30°C. After reaching the 
highest 90°C, the cooler of the thermostat was switched on and the 
temperature was dropped also in a step-wise manner. At the ending 
15°C the absorbance went back to almost the identical value as that of 
the starting 15°C. In the seawater medium the trend and slope were 
almost the same as that in freshwater. The change due to temperature 
variation was apparently reversible in this experiment.

Color formation reaction at fixed temperatures

In Exp-2 the color formation reaction took place at fixed 
temperatures (20, 25, 30, 35 and 45°C) and the results are presented 
in Figure 5. At 20°C the curve was an “S” shape with a slow beginning, 

followed by an accelerating stage and then a slow ending. The time for 
reaching 90% of maximum absorbance (t90%) was 62 s at 20°C, reduced 
to 38 and 24 s at 25 and 30°C,  with -1% and -2% lower absorbances. At 
45°C, the reaction was very fast (t90%<15s), but the ending absorbance 
appeared to have a rising trend. This rising phenomenon can be more 
clearly seen in the enlarged diagrams in Figure 6 and was not found 
to be due to the change of the reagent blank (all reagent blanks were 
<0.001 at 10 min).

There are four samples shown in Figure 6 with three tested 
concentrations (10, 30 and 50 µΜ P) in freshwater and the last one 
was 30 µΜ P in seawater. At 45°C the absorbance for a 10 µΜ P sample 
was 0.198 at 30 s and rose to 0.204 at 400 s, with a difference as large 

Figure 1: Apparatus used to monitor the color formation reaction in this 
study. The system has two thermostat baths (#1 and #2). The first one is 
connected to a water-circulating cuvette holder installed in a Shimadzu 
UV1800 spectrophotometer. A dome-type Hellma flow cuvette (1 cm, 450 µL)is 
inserted into the holder. The sample is placed in a bottle immersed in a second 
thermostat. Upon adding reagents, the mixture is quickly taken up to fill the 
cuvette by a peristaltic pump at a rate of 20 mL min-1.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

650 700 750 800 850 900 950

Wavelength (nm)

Ab
so

rb
an

ce

25℃

75℃

25℃

75℃

(A)

(B)

Figure 2: Overlapped spectra of the phosphomolybdenum blue 
complex at various temperatures for (A) 50 µM P in freshwater and 
(B) 30 µM P in seawater. The temperature settings were 25, 35- 75
oC at 10oC intervals.
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Figure 3: Observation of the variation of absorbance at 880 nm by changing 
the temperature of the cuvette holder. (A) 50 µM P in freshwater (B) 30 µM P 
in seawater.
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as +3% or a slope of +0.5%min-1. This climbing trend continued 
even after 400 s, and the slope was more obvious at the relatively low 
concentration comparing to +0.25%min-1 at 30 µΜ and +0.16%min-1 
at 50 µΜ, respectively. For the seawater medium, the phenomenon 
was almost the same as for freshwater. It reveals that, the molecular 
structure of the blue complex might be different if the reaction takes 
place at a temperature higher than 35°C. Exp-2 did not continue to add 
higher temperatures as water vapor started to condense on the wall of 
the sample bottle.

Reaction at ramped temperatures

In Exp-3 the sample (50 µΜ P) was maintained at a fixed starting 
temperature of 25°C and the cuvette holder was heated up by setting 
the thermostat at 30, 45, 60, 75 and 90°C, respectively. The results were 
somewhat erratic. All curves shown in Figure 7 tangle with each other 
in the first hour and the readings appear to stabilize only after 180 min. 
Enlarged diagram (Figure 7) gives a clearer pattern. Only at 30°C is 
the curve in a normal shape. At 45°C the blue color formed quickly 
in 30 s, but dropped a little afterward, and then rose again gradually 
after 3 min. At 60°C the curve dropped after 30 s, rose after 2 min. 
At 75°C the amplitude of the drop-rise became magnified, and after 
15 min the absorbance dropped again. At 90°C the curve ran high 
quickly to an absorbance of 1.2 at 7 min which was +20% in excess 
of the normal reading. After 7 min the absorbance dropped down 
gradually. The cause of this hump is unclear, and it is not parallel 
with the reagent blanks which became obvious only at > 75°C after 10 
min. An extended observation was made by allowing the blue color 
to form at high temperatures and then cool down to 25°C. The final 
absorbance readings did go high but did not go back to the expected 

values as described in Exp-1. The effect of heating in Exp-3 was no 
longer reversible.

Conclusion
The negative aspect of heating on the Murphy and Riley method 

for the determination of phosphate has long been overlooked by 
scientists but evidences found in this study reveals that the uncertainty 
induced by the temperature difference should not be ignored. In 
general, the molar extinction coefficient of the final blue color at 880 
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Figure 4: Relationship between the molar extinction coefficient (880 
nm) and temperature in (circle) freshwater and (dot) seawater. The 
slope was found to be -48 M-1cm-1oC-1 for both media, or a relative 
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Figure 5: (Left) The color formation curves for a 10 µM P solution at 20, 25, 30, 
35 and 45oC, respectively. (Right) Time required for reaching 90% of maximum 
absorbance (t90%) is a function of temperature.
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nm has an inverse relationship with temperature. If the color formation 
reaction takes place at temperatures much higher than 35°C, erratic 
results can happen and it is irreversible even if the solution cools back 
down to room temperature. The use of heating at more than 35°C 
should be avoided in any case. When a batch of samples having a 
wide temperature range is to be measured, or when a sample is just 
digested for total P measurement, they should be left to equilibrate 
with the surrounding temperature before adding reagents. For manual 
operation a temperature-controlled cuvette holder set at a fixed 30°C 
can be used for optimal precision and accuracy. For automated analysis 
the same cuvette holder can be used to reduce the possible variation 
due to the temperature effect.
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