Effect of Systemic Estradiol Administration on Circadian Body Temperature and Activity Rhythms in Female Rats

Uchida Y1, Marui S1, Tokizawa K1 and Nagashima K1,2

1Laboratory of Integrative Physiology, Body Temperature and Fluid Laboratory, Waseda University, Japan
2Institute of Applied Brain Sciences, Waseda University, Saitama, Japan

Received Date: August 21, 2017; Accepted Date: August 28, 2017; Published Date: September 04, 2017

Abstract

The estrus cycle affects the circadian body temperature (Tb) and activity rhythms, and progesterone is related to these alterations. However, it is not clear whether estrogen (E2) influences it. The present study examined whether E2 affects the circadian Tb and activity rhythm. Ovariectomized rats were implanted with a silastic plate with or without E2 underneath the dorsal skin (E2(-) and E2(+)), and these along with sham operated rats (SH) were measured for Tb and activity for 2 weeks. The mean Tb was lower, and mean activity was higher in E2(+) than that in E2(-) in the day. In the dark phase, the slope of the relationship between the mean Tb and activity in E2(-) was the greatest. The slope in E2(+) and SH was greater in the light phase than that in the dark phase. The daily peak of Tb and activity was lower in E2(+) than that in E2(-). The appearance of the nadir in Tb was later in E2(+) and SH than that in E2(-). The appearance of the peak in Tb and activity was earlier in E2(+) and SH than that in E2(-). Thus, E2 may modulate the circadian Tb and activity rhythm in female rats.

Keywords: Estradiol; Body temperature; Activity; Circadian

Introduction

It is reported that in an environment of thermo-neutral range [1], where autonomic thermoregulatory responses are minimum, the estrus cycle affects circadian body temperature (Tb) rhythm in women [2-9] and in female rats [10-12]. In women, the change of the rhythm is characterized as the increased mean Tb and decreased circadian amplitude in the luteal phase [7,12]. The estrus cycle in female rats generally lasts 4-5 days, consisting of four phases; two days of diestrus, followed by the proestrus and estrus phases. In the proestrus phase, the mean Tb in the light phase decreases [12]. Moreover, in the proestrus phase, the tail surface temperature (Ttail) decreases in the dark phase [13], and spontaneous activity increases [14,15], compared with that in the other phases. The peak in the activity appears earlier in the proestrus rather than on the first day of diestrus [11]. An increase in the mean, peak, and nadir of Tb and a decrease in the amplitude of Tb were observed in the luteal phase, which shows a higher progesterone level compared with that in the follicular phase in women [5]. However, the mechanism involved in the changes of the rhythms remains unclear.

It has been speculated that progesterone, the level of which changes with the estrus cycle, affects the circadian Tb rhythm [2,5,16] in a thermoneutral environment. Progesterone administration suppressed activity in female rats [17]. In contrast to the influence of progesterone on the circadian Tb rhythm, the role of estradiol (E2) still remains controversial. E2 did not alter the circadian Tb rhythm in rats [13] and in women [2,3,5]; however, some reports showed that E2 decreased the Ttail in the dark phase in rats [13]. E2 influences the circadian rhythm of activity in mice [18-21] and hamsters [22,23] but not in rats [14,24]. Thus, we hypothesized that E2 might modulate the circadian rhythm of Tb and activity.

In the present study, we compared Tb and activity between sham operated rats, ovariectomized rats, and rats administered E2 externally, to determine the effect of E2 on the circadian rhythm of Tb and activity.

Methods

Animals

Female Wistar rats (n=24; 224 ± 2 g; age, 8 weeks; Takasugi, Saitama, Japan) were used in the present study. They were individually housed in cages (45 cm × 25 cm × 20 cm) at an ambient temperature (Ta) of 27 ± 0.5°C with a lighting schedule of 12-h light and 12-h complete darkness (lights on at 0700 h, 300 lux at their eye level). All experimental protocols were approved by the Institutional Animal Care and Use Committee of Waseda University.

Surgery

Under inhalation anesthesia with 2% sevoflurane, a radio transmitter (26 mm × 8 mm, 2.2 g; PDT-4000 HR E-Mitter®, Starr Life Sciences Corp., Oakmont, PA, USA) for measuring Tb and spontaneous activity was placed in the peritoneal cavity. Bilateral ovariectomy or sham (SH group; n=8) surgery was conducted through a dorsal skin incision. Silastic plates (5 mm × 25 mm × 15 mm; Silpot134, 0.2 ml; Silpot catalyst 184, 20 µl; Dow Corning Toray Co., Ltd, Tokyo, Japan) with and without 17β-estradiol (Sigma, St. Louis, MO, USA) were prepared. One plate was placed under the right dorsal skin. Eight rats were implanted with an E2 plate (E2(+)) group and eight other animals had a control plate without E2 (E2(-) group). The placement of the estradiol-containing plate results in a constant E2 level in the plasma at least for 7 days [25]. We set a pharmacological level of E2 to determine the definitive effect of E2. Plasma E2 concentration was kept at a high level in the E2(+) group (1208 ± 85 pg/ml) for 26 days. After the surgery, the rats were injected sc with...
penicillin G (1,000 U, Meiji Pharmaceutical, Tokyo, Japan) to prevent post-surgical infection, and were placed in the cage at 27°C.

Experimental protocols
Before the surgery, body weight, food intake, and water intake were estimated at 0830-0900 for 5 days. Then, the entry to animal room was restricted for 2 weeks to avoid a time cue effect by the touches and sounds of experimenters during the T_b and activity measurements. After a non-contact period, the same measurements were again performed for 5 days. The signals from the radio transmitter were obtained through a receiver board ER-4000 Energizer/Receiver (Starr Life Sciences Corp.) Every 5 min, and were stored in a personal computer with a data-logging program (VitalView; Starr Life Sciences Corp.). The accuracy of the value of T_b was ± 0.1°C.

Statistics
The T_b and activity on each day were averaged every 30 min, and also for the light and dark phases and the entire day. The mean, nadir, and peak of the circadian T_b and activity rhythms and the difference between the maximum and minimum (amplitude) were estimated for each day of the 2-week measurement period, and the values were averaged. Differences in these values were assessed by two-way ANOVA with R language (R version 3.1.2, The R Foundation for Statistical Computing). Tukey-Kramer’s test was used to identify the significant differences at specific time points of T_b and activity. The null hypothesis was rejected at the level of P<0.05.

Results
The circadian T_b and activity rhythms in a day are shown in Figure 1A and 1B. T_b in the E_2(-) group was lower than that in the SH group at 0-2, 9-10, and 15-23 hours. T_b in the E_2(+) group was lower than that in the SH group at 2-4 and 9-23 hours (Figure 1A). T_b in E_2(+) was lower than that in E_2(-) at 2-16 and 21-24 hours. Activity was lower in the E_2(-) group than that in the SH group at 0-3 and 10-23 hours. Activity was lower in the E_2(-) group than that in the SH group at 7-8, 11-12, and 21-23 hours. Activity was higher in the E_2(+) group than that in the E_2(-) group at 1-3, 10-11, and 12-23 hours (Figure 1B).

Table 1: Slope of the regression line between body temperature (T_b) and activity in the light and dark phases in the E_2(+), E_2(-), and SH groups. Values are mean ± SE (n=8 per group). Significant difference between E_2(-) and E_2(+) (§), E_2(-) and SH (†), and light and dark phases (§), P<0.05.

Table 2 shows the mean in the day, light, and dark phase, the amplitude, the nadir, and the peak of T_b (°C) and activity (counts). The mean in a day of T_b in SH was the greatest among all groups. The value was not different between the E_2(+) and E_2(-) groups. The mean in the light phase of T_b was not different among the groups. On the other hand, the mean in the dark phase and the amplitude of Tb in the SH group were greater than those in the E_2(-) group, and did not differ from those in the E_2(+) group. The values in the E_2(+)-group were lower than those in the E_2(-) group. The nadir of T_b was not different among groups; however, the peak of T_b in the SH group was greater among the groups; the value in the E_2(+) group was greater than that in the E_2(-) group. The mean of activity in the SH group was greater than that in the E_2(-) group, and was not different from that in the E_2(+) group. The mean in the light phase of activity in the SH group was the greatest among groups; however, the value was not different between the E_2(-) and E_2(+) groups. The mean in the dark phase of activity in the SH group was greater than that in the E_2(-) group, and was not different from that in the E_2(+) group. The peak and amplitude of activity in the SH group was not different from that in the E_2(-) group, and was greater than that in the E_2(+) group. The value in the

Figure 2: Relationship between T_b and activity in the light (A) and dark (B) phases in the E_2(-), E_2(+) and SH groups. Values are mean ± SE (n=8 per group).
Table 2: Mean in the day, light, and dark phase, amplitude, nadir, and peak of Tb (°C) and activity (counts) in the E₂(-), E₂(+), and SH groups. Values are mean ± SE (n=8 per group). Significant difference between E₂(-) and E₂(+) (†), E₂(-) and SH (§), E₂(+) and SH (†,§), and light and dark phases (§), P<0.05.

Table 3 shows the appearance time of the nadir and the peak of Tₘ and activity. The appearance time of the amplitude in Tₘ for the SH group was earlier than that in the E₂(-) group, and was not different from that in the E₂(+) group. The value in the E₂(+) group was earlier than that in the E₂(-) group. The appearance time of the nadir in Tₘ in the SH group was later than that in the E₂(-) group, and was not different from that in the E₂(+) group. The value in the E₂(+) group was earlier than that in the E₂(-) group. The appearance time of the peak in Tₘ in the SH group was earlier than that in the E₂(-) group, and was not different from that in the E₂(+) group. The value in the E₂(+) group was earlier than that in the E₂(-) group. The appearance time of the amplitude in activity in the SH group was not different from that in the E₂(-) and E₂(+) groups. The value in the E₂(+) group was earlier than that in the E₂(-) group. The appearance time of the nadir in activity was not different among groups. The appearance time of the peak in activity in the SH group was earlier than that in the E₂(-) group, and was not different from that in the E₂(+) group. The appearance time of the peak in activity in the E₂(+) group was earlier than that in the E₂(-) group.

Table 3: The amplitude, nadir, and peak of the appearance time of Tₘ and activity in the E₂(-), E₂(+) and SH groups. Values are mean ± SE (n=8 per group). Significant difference between E₂(-) and E₂(+) (†), E₂(-) and SH (§), E₂(+) and SH (†,§), P<0.05.

The body weight, food intake, and water intake are shown in Figure 3A-3C, respectively. Pre-surgery body weight was not different among the groups; however, post-surgery body weight in the SH group was greater than that in the E₂(-) group. The value in the E₂(+) group was
lower than that in the E2(+) group (Figure 3A). Pre- and post-surgery food intake and water intake were not different among groups (Figure 3B and 3C). Post-surgery food intake decreased from the pre-surgery food intake in all groups (Figure 3B). Water intake showed no difference between the pre- and post-surgery (Figure 3C). Plasma estradiol concentration in the E2(+) group was higher than that in the E2(-) and SH groups (62 ± 6 and 201 ± 60 pg/ml, respectively).

![Figure 3](image_url)

Figure 3: Body weight, food intake, and water intake (A, B, and C). Values are mean ± SE (n=8 per group). Significant difference between E2(-) and E2(+) (†), E2(-) and SH (‡), E2(+) and SH (**), and pre-surgery vs. post-surgery (¶), P<0.05.

Discussion

The present study showed that E2 decreased the mean of Tb, and increased the mean of activity in the dark phase. E2 affected the time-dependent relationship between Tb and activity. E2 decreased the peak of Tb and activity, and delayed its appearance; however, E2 did not influence the nadir of Tb and activity, but delayed their appearance. Thus, E2 may modulate circadian rhythm of Tb and activity in female rats.

E2 did not affect Tb in the light phase. This result coincides with those of a previous study showing that E2 did not affect Tb in the light and dark phases [13]. Activity in the dark phase was decreased in ovariectomized mice [26] and rats [27]. The effect of E2 on activity in the dark phase is controversial; E2 increased it in the dark phase in mice [18,19], but did not influence it in the light and dark phases in rats [14,28]. The increased activity in the dark phase by E2 coincided partly with the results of the previous studies.

In the E2(+) group, the dependence of Tb on activity in the dark phase was lower than that in the light phase; however, it was not observed in the E2(-) group (Table I). Thus, E2 may decrease the dependence of Tb on activity specifically in the dark phase. In literature, Tb is mainly determined by skin vasomotion and activity in rats at thermoneutral environments. E2 decreased the Tb in the dark phase at the thermoneutral range [14,28]. Vasconstrictors like plasma adrenaline and arginine vasopressin have a circadian rhythm; higher in the light [29] and dark [30] phases, respectively; E2 did not affect these [31,32]. Plasma renin activity and angiotensin related to the synthesis of vasconstrictor angiotensin II were higher in the light phase in a day [33]. The influence of E2 on angiotensin II is controversial as E2 increased [34] or did not affect [35] it. Thus, it is difficult to assume that the vasconstrictors induced the decreased Tb by E2 in the dark phase.

The circadian rhythm of peripheral vasodilators like endothelium-derived hyperpolarizing factor (EDHF) and endogenous hydrogen sulfide (H2S) is unknown yet. In the light phase, E2 affected EDHF in the mesenteric artery in female rats [36,37] and H2S production in the mesenteric artery in ewes [38]. Thus, E2 may modulate peripheral vasodilation rather than vasocostriction through EDHF and H2S in the light phase; however, the effect in the dark phase is unclear. E2 is considered to affect sympathetic nerves because plasma norepinephrine fluctuated along with the estrus cycle in females [39]. E2 may modulate skin vasomotor circadian rhythm through vasodilators and sympathetic nerves. In summary, it was speculated that the dependence of Tb on activity was decreased due to strong skin vasomotion in the dark phase in the E2(+) group.

The effect of E2 on circadian Tb and activity rhythm is controversial; E2 did not influence the circadian rhythm of Tb in female rats [28] and women [40], but increased the activity and amplitude, delayed their peaks, and advanced their onset [18]. E2 decreased the peak of Tb and activity, advanced its appearance, and delayed the appearance of the nadir in Tb. The circadian rhythm of activity in mice administered with E2 was similar to that in mice administered with E2 α and β receptors agonists [18]. It was speculated that the E2 α and β receptors are related to the alteration in Tb by E2 in the present study, though a mechanism yet unknown.

The decreased body weight by E2 coincided with that observed in previous studies [41-43]. E2 administration did not affect the food intake per body weight. E2 administration in ovariectomized rats decreased the food intake in a day [44] and in the light phase [41,42,45]. Food intake in previous studies was not calculated per body weight. This may influence a difference in the results between the present and previous studies.

The estrus cycle affects water intake and drinking behavior. Drinking behavior in the estrus phase was lower than that in other phases [46]. Isoprenaline-induced water intake in the proestrus and estrus phases was lower than that in the other phases [47]. Ovariectomy in rats resulted in increased water intake [48]. E2 administration decreased the water intake in female rats after water deprivation [49]. E2 administration prolonged the onset of drinking behavior in female rats administrated with NaCl solution [50]. Our result that E2 decreased water intake coincided that of with previous studies. The result that E2 did not influence water intake per body weight or food intake could not be compared with previous studies, because they were not calculated previously. The apparent water intake seemed to decrease due to the decreased body weight by E2.

The present study showed that E2 affected the time-dependent relationship between Tb and activity, and modulated the circadian rhythm of Tb and activity in female rats.

Acknowledgements

We are grateful to Prof. Kazuyoshi Tatsui (Waseda University) and Prof. Keiko Morimoto (Nara Women’s University) for their advice for this research. The present research was partially supported by the Ministry of Education, Science, Sports, and Culture; Grant-in-Aids for Scientific Research (B), No. 20390066; Grant-in-Aid for Research Activity, No. 24800047; Grant-in-Aid for challenging Exploratory Research, No. 16K13055; MEXT KIBANKEISEI (2010); the Strategic Research Platforms for Private University; and Hayashi Memorial Foundation for Female Natural Scientists.
Author Contributions

KN supervised the entire project. YU and KN designed the study and wrote the manuscript. YU, SM and KT performed experiments.

References

