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Abstract
In this paper, we considered fabrication of amorphous silicon nanoparticles (a-Si Nps) on porous anodic aluminum 

template, and influence substrate nature on them. In our case, the porous anodic aluminum films (PAL) were prepared 
by two-step anodization technique on different substrates (e.g., glass, aluminum and stainless steel), and followed by 
deposition of a-Si:H thin films at lower substrate temperature (150°C). The influence of substrate on the structural and 
optical properties of these samples (as labelled PALSi) was investigated through an extensive characterization. The 
microstructure of the PAL layer and a-Si:H films was systematically studied micro-Raman, X-ray photoelectron, Fourier 
transform infrared spectroscopies and scanning/transmission electron microscopies analyses. The optical constants 
(n and k as a function of wavelength) of the films were obtained using variable angle spectroscopic ellipsometry (SE) 
in the UV–vis–NIR regions. The deposited film was modeled as a mixture of void, amorphous silicon and aluminum 
using the Bruggeman approximation. Based on this full characterization, it is demonstrated that the optical properties 
of the films are directly correlated to their micro-structural properties, which are strongly dependent on the nature of 
substrate.
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Introduction
In the last decades the Researchers have been focused on 

nanostructured porous materials because of their unique geometrical 
properties. Such nanoporous materials are very suitable as a template 
for synthesis of functional nanostructures [1,2] or they can be also used 
for fabrication of various nanodevices, e.g., solar cells [3,4], photonic 
crystals [5,6] or magnetic storage [7].

During the last few years, the elaboration of porous aluminum 
structures by anodization of thin Al on different substrates have 
attracted considerable attention as nanostructural dielectric templates, 
which allow depositing metal [8-10], semiconductor [11,12], carbon 
nanotube [13] and conductive polymer [14] particles of controlled size 
and morphology.

In most cases, Si wafers are used as substrates for the deposition 
of thin Al films [15-17]. Depending on the purpose of the final PAL 
structures, intermediate (e.g., conductive) layers can be introduced 
[18,19]. More recently, the elaboration of PAL films by anodization of Al 
thin films on different substrates (in our case, glass, aluminum, stainless 
steel) have been extensively fabricated [20]. We have demonstrated 
that the self-organization of the pores is highly dependent on the 
morphology of the substrate-type.

In this work we demonstrate the possibly to grow of nanostructures 
Si (e.g., nanoparticles) embedded into the PAL templates formed, at 
room temperature, on three substrates (glass, aluminum and stainless 
steel). An amorphous silicon films are deposited by a PECVD 
technique. A film growth rate up 2 A˚/s has been achieved. The 
Spectroscopic E spectra are measured in the range of 200-850 nm with 
a rotating polarizer ellipsometer. The PALSi was modeled as a mixture 
of void, aluminum and amorphous silicon or fine grains embedded in 
amorphous matrix. The complex refractive index n(E) and extinction 

coefficient k(E) of the a-Si layer are calculated using the Bruggeman 
approximation [21]. The optical properties of the deposited films are 
correlated to the porous aluminum and a-Si films nanostructure. The 
energy gap of the a-Si films depends strongly on the porosity.

Experimental Section
Synthesis of a-Si:H embedded into porous anodic aluminum 
(PALSi)

The 2 µm-thick of aluminum of (99.99%, high purity) was 
evaporated on the following substrates: aluminum alloy, glass and 
stainless steel. All substrates were cleaned by acetone and ethanol to 
remove contaminants from their surface. Then, the porous alumina 
layer (PAL) was formed by two-step anodization as described in our 
previous works [20]. Then, the a-Si:H films were deposited by the 
plasma-enhanced chemical vapour deposition (PECVD) on the porous 
anodic aluminum layer (PALSi) at 150°C, using a gas mixture of silane 
and H2 at a total pressure of 0.5 mTorr.

Characterization techniques

The Raman spectroscopy was performed to know the structure of 
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different substrates at the substrate temperature of 150°C. It is evident 
that, for the same synthesis procedure, the morphology of the samples 
is very different.

For the sample grown on glass, the surface is characterized by 
islands, result of the coalescence of Si nanoparticles. The sample grown 
on aluminum exhibits a rather smooth grainy surface. The grains have 
spherical or oval shape and are almost uniform in size.

Furthermore, the film grown on stainless steel consists of smaller 
grains and there are more big hillocks on the surface.

These smaller grains (about 3 nm in size) are organized in a well-
defined geometry as nanoparticles injected the porous aluminum layer, 
as shown by TEM image (Figure 2).

Raman and FTIR analyses

Figure 3 shows the Raman spectra of the different a-Si:H thin films 
deposited on porous anodic aluminum (PAlSi) by PECVD technique 
under the same condition, but on different substrate-type. These 
spectra are characterized by a broad peak located around 475 cm-1 
corresponding to TO phonon mode and the vibration density states 
characteristic of amorphous Si as well-known since Iqbal and Veprek 
[21]. No noticeable Raman shift is observed for all samples, indicating 
that the a-Si:H thin films remain amorphous at different substrate-type.

Therefore, Figure 3 shows the Raman peak observed around 625 
cm-1 caused by the presence of hydrogen in the film and corresponds to 
wagging vibration of Si-H bonds [22].

Figure 4 displays the FTIR absorption spectra of the all synthesized 
samples. Several vibration bands can be found in the 400-2500 cm-1 
region.

The change observed in the form of the FTIR spectra as a function 
of substrate is related to the effect of substrate on the FTIR analysis in 
reflection mode.

Several absorption peaks associating to the different vibration 
modes of the bonds between Si, H and O can be found in the 400–2500 
cm-1 region.

The vibration band at about 460 ± 5, 950 ± 5 and 1100 ± 10 cm-1, 
for different substrates, are related to rocking, bending and stretching 

the deposited a-Si:H thin films. Morphological characteristics of the 
deposited PALSi films on different substrate have been investigated 
using Scanning Electron Microscopy (SEM), a scanning electron 
microscope (FESEM, ZEISS-Merlin with Gemini II_ column) with an 
acceleration voltage of 1.5-3 kV and at a working distance of 3.5-5.5 
mm. The presence of silicon nanoparticles was detected by transmission 
electron microscopy (TEM).

The relative atomic content and the bonding configurations in the 
surface films were investigated by X-ray photoelectron spectroscopy 
(XPS). The analysis were acquired using a K-Alpha system of Thermo 
Scientific, equipped with a monochromatic Al-Kα source (1486.6 eV), 
and operating in constant analyzer energy (CAE) mode with a spot 
size of 400 micron. Fourier transform infrared spectroscopy (Perkin–
Elmer FTIR spectrophotometer) was performed to determine the type 
amount of the hydrogen bonds.

The optical properties of PALSi films were acquired using variable 
angle spectroscopic ellipsometry (SE). The ellipsometric angle Ψ and 
phase difference were measured as a function of wavelength and angle 
of incidence. The measurements were performed in the wavelength 
range of 300-800 nm, using an angle of incidence varying from 50° 
to 80° by steps of 5°. A compensator plate was used with the rotating 
analyzer configuration to improve phase measurement accuracy 
over a full 360° range. When used with an appropriate optical model 
describing the optical dispersion of the sample and its spatial structure 
(in our case a-Si:H thin films deposited on porous aluminum layer), 
SE allows accurate determination of film thickness as well as refractive 
index dispersion n(E) and extinction coefficient k(E) as functions of 
photon energy E (or wavelength). n(E) and k(E) were calculated in the 
case of PALSi thin films using the Bruggman model.

The thickness of the films was determined by DEKTAK thickness 
profilometer estimation.

We show that the thickness of the PALSi films is similar for the 
different samples (at about 50 nm and 40 nm for the a-Si:H thin film 
and the PAL layer respectively).

Results and Discussions
SEM and TEM analyses

In Figure 1 are shown SEM images of the PALSi films grown on the 

Figure 1: SEM images of all the investigated samples.
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modes of Si–O–Si, respectively [23]. The enhanced intensity peak 
at 1100 cm-1 indicates that the layer has a porous structure with a 
significant decrease in size of Si nanoparticles [24]. This indicates 
the in-diffusion of oxygen into the films. This result is confirmed by 

TEM analysis in Figure 3. The absorption band centered at about 
620 cm-1 is associated to the rocking/wagging modes of Si-Hn bonds 
mainly in the monohydride configuration, typical of less disordered or 
microcrystalline materials [25,26]. The absorption peak at 620 cm-1 was 

Figure 2: TEM image of the a: SiH film deposited on PAl layer at T=150°C.
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Figure 3: Raman spectra of a-Si:H thin films deposited on PAl layer as function of substrate-type.
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Figure 4: FTIR spectra of a-Si:H thin films deposited on PAL layer grown on different substrates: a) aluminum, b) glass and c) stainless steel.
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used to determine the total hydrogen content, CH, using the following 
relation:

CH=A * I/N

where A620=1.6 *1019 cm-2 and N=5.0 *1022 cm-3, being N the atomic 
number density of pure silicon. The estimated hydrogen contents are: 
2.69 %, 2.76 % and 3.87 %, for the PALSi grown on aluminum, glass 
and stainless steel substrates respectively. This indicates that the in-
diffusion of the impurities, particularly the oxygen, into the film grown 
on the stainless steel is less than the other substrates.

XPS analysis

In Table 1 are shown the atomic percentages of all the collected 
species, for the deposited a-Si on PAL grown on different substrates: 
aluminum, glass and stainless steel. The different samples were 
analyzed before and after removing of about 3 nm of deposited films 
by Ar+ etching treatment.

Similar trends are found for the all synthesizes samples prepared 
on different substrates. The surface of the deposited a-Si:H thin films 
are mainly composed by silicon, oxygen and carbon. Hydrogen atoms 
are not detected by XPS analysis.

The presence of the large amount of oxygen element (about 30%) 
may be come from two contributions; the most part from the surface 
contamination under atmosphere after long time the deposition, and 
the second part from the O obtained in the fabricated PAL layer.

While, the presence of C (about 15-20%) may comes from the 
different electrolytes acid used in the synthesis of the PAl layer [20]. 

Therefore, after the etching of about 3 nm, we show a rapid increase 
of the silicon atomic percentage (up to 80-90%), as well as a significant 
decrease of the silicon and carbon content.

In order to investigate about the changes of the bonding 
configurations as a function of the substrate-type, XPS acquisitions of 
all the collected atomic species at high resolution (HR) were carried 
out.

Figure 5 shows high resolution XPS spectra of Si2p peaks, taken 
before (A) and after (B) Ar+ etching for all investigated samples. There 
is no observable difference comparing all the studied samples. The Si2p 
XPS spectra are characterized by the presence of two features, generally 
ascribed to the metallic and oxide phases, located at about 99.5 eV (Si0) 
and 104.5 eV, respectively (Figure 5) [27]. Instead, after the removal of 
about 3 nm of materials, Si 2p spectra show the disappearance of the 
Si-Ox and SiC bonding contribution (Figure 5)

For more detail, the haute resolution Si2p core line was 
deconvoluted using Gauss–Lorentzian subbands and a Shirley-type 
background function (Figure 6), taking into account of both the 
oxygenated and carbidization of the silicon phases [28].

The spectra decomposition reveals the presence of three distinct 
components as seen in Figure 6.

The bands, centered at 99.5, 100.5 and 104.5 eV originate 
respectively from metallic like silicon, the Si-C and Si-Ox bonding 
contributions.

The presence of the Si-C bonds on the surface of the silicon films, 
is attributed to the diffusion of the carbon atoms from the porous 

Sample Aluminum Glass Stainless Steel
Atomic percent (%) before etching After etching before etching After etching before etching After etching

Si 56.51 91.15 49.04 84.47 47.19 81.77
O 28.05 2.67 32.11 7.1 30.15 7.94
C 15.18 1.853 16.9 3.25 20.89 4.85
Al 0 0 0.29 0.69 1.01 0.82

Table 1: Atomic percentages for different samples before and after removing of about 3 nm of deposited films by Ar+ etching treatment.
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Figure 5: High resolution XPS Si 2p spectra for all the investigated samples: before (A) and after Ar+ ion etching surface treatment (B).
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aluminum (vary from 25 to 35% at as a function of substrate-type [20]) 
to the surface during the deposition of a-Si:H thin films and it’s proved 
by C1s core level, located in the 280-290 eV binding energy range.

C1s lineshape was deconvoluted using six contributions. The band 
at 283.5 eV refers to C-Si bonds, the main contribution at 284.5 eV is 
attributed to C=C/C-C in the aromatic ring and four other contributions 
at higher binding energies corresponding to carbon atoms bonded to 
oxygen in different surface functionalities (C-OH, C-O,C=O) centred 
at 285.8, 286.6 and 287.7 eV, respectively. The contribution at 288.3 eV 
refers to π-π bonds. These results are in good agreement with literature 
[28].

This means that the untended oxygen incorporated into the film 
can be considered as structural defects of the silicon thin films. While, 
the incorporated-carbon is not strongly affected on the structure of 
a-S:H thin films, indeed, the main bonding contribution is attributed 
to C=C/C-C.

This means that the untended oxygen incorporated into the film 
can be considered as structural defects of the silicon thin films. While, 
the incorporated-carbon is not strongly affected on the structure of 
a-S:H thin films, indeed, the main bonding contribution is attributed 
to C=C/C-C.

Optical properties

To examine the influence of these microstructural characteristics 
on the optical properties, we performed SE measurements of the PASL 
produced structures.

To determine the refractive index (n(E)) and extinction coefficient 
(k(E)), we considered that the PASL layers are inhomogeneous, as 
shown above by XPS analysis.

The optical properties of the films were determined using the 

Bruggeman model based on the equations [21] described below.
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+

Where fi is the volume fraction of the materials, ε is the effective 
dielectric function of the composite material, εi is the dielectric function 
of the materials in their pure forms. The two main components of the 
Bruggeman model are silicon and aluminum.

The model is based on additive contribution from each phase into 
the effective polarisability of the medium [21].

The proposed model is considerate as a mixture of four layers as 
depicted in Figure 7.

It comprises of a native oxide (SiO) layer, a diffusion layer (SiC) 
and a blending of a-SiH, Al and void. Here the presence of the SiO 
in the first layer is to take account the possible formation of a native 
oxide layer, due to the surface contamination of the PASL structure 
under atmosphere, while, the diffusion of the carbon atoms from the 
porous aluminum layer formed in oxalic acid to the surface possible 
formation of a SiC layer and it is proved by XPS and FTIR spectra. 
The measured and the best fit ellipsometric spectra for the different 
samples are shown in Figure 8. This means that the agreement between 
the fitted and the measured spectra is very good and the approximation 
of this model can be applied.

Figure 9 shows the refractive index and extinction coefficient as 
functions of wavelength for the PASL films deposited on different 
substrates. From Figure 9 we can clearly observe the change in both 
of refractive index and extinction coefficient with the modifying of the 
substrate-type.

For example for λ=700 nm the refractive index was about 1.59 (for 
glass substrate), 1.61 (for aluminum substrate) and 1.62 (for stainless 
steel substrate). In agreement with the structural and morphological 
results, we verify that the refractive index value, for a given wavelength, 
depend in porosity density (void). This can be explained by the 
distribution and/or nucleation of the silicon aggregates inside the pores 
of PAL layer, which are strongly dependent on the nature of substrate 
[20].

The energy band gap was obtained from the relation between 
the absorption coefficient (α) and extinction coefficient (k), α=4kπ/λ, 
that have been determined from SE data. (αhν)1/2 versus (hν) can be 
estimated using the Tauc plot method [28]. Figure 10 shows the energy 
band gap for different samples as a function of the nature of substrate.

The band gap energy of PALSi films is found to be e.g.,=2.13, 2.14 
and 2.23 eV for the aluminum, stainless steel and glass substrates 
respectively. This result can be explained by the oxygen and carbon, 
quantum size and the amorphous state effects take place in the former 

Figure 6: Si 2p (a) and C1s (b) lineshapes deconvolution.
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Figure 7: The ellipsometric multilayer model of the PALSi.
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particles. So oxygen and carbon diffusion in a-Si:H thin films at the 
deposition process, can be related to saturation dangling bonds atoms 
of silicon as shown by the XPS analysis.

Based on the band gap energy obtained for the different samples, 
we can show that the optical absorption properties are significantly 
affected by the presence of Si particle with very small size along the 
pores of PAL (as shown by TEM analysis).

Conclusion
Efficient a-Si:H thin films based optoelectronic device require the 

development of high quality amorphous Si nanoparticles incorporated 
into the regular pores of PAL layer which can be produced by using an 
appropriate substrate. In this work, the nanoparticles silicon thin films 

were deposited by PECVD technique on a porous anodic aluminum 
prepared by anodization of Al thin films on different substrates (glass, 
aluminum and stainless steel). Well grown films are found along all 
the substrates but change is observed in the structural and optical 
properties with the variation of substrate. It was observed that the 
nanoparticles are organized in well-defined geometry for the samples 
deposited on glass. The final microstructure of the prepared film 
depends strongly on the nature of the substrate. Evolution of optical 
properties (refractive index, extinction coefficient and gap energy) has 
been analyzed.
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