Effects of Catfish (Clarias gariepinus) Brood-stocks Egg Combination on Hatchability and Survival of Fish Larvae

Onada Olawale Ahmed* and Ogunola Oluniyi Solomon
1University of Ibadan, Nigeria
2University of Bremen, Germany

Abstract

Fish seed production of catfish and tilapia has been successfully carried out in Nigeria. Despite the success, there still exist a wide gap between fish seed demand and supply, this therefore necessitate increased research for development. This project is aimed to study the effects of Clarias gariepinus brood-stocks' egg combination on hatchability and survival of fish larvae.

2 females gravid Clarias gariepinus brood stock size (800-900 g) were injected with pituitary gland hormone at 3 mg kg⁻¹ of body weight. Milt gotten from the selected male was mixed with collected eggs of injected females after the expiration of latency period. 1/3 of the eggs collected from T1 (first female brood stock) and T2 (second female brood stock) were combined and recorded as T3 (mixture of 1/3 of T1 and T2). Each of T1, T2 and T3 were replicated as T11, T12, T13, T21, T22, T23, T31, T32, T33. Each of the replicated fertilized egg was spread in a monolayer pattern on a 1 mm diameter net in nine 0.8 m × 0.8 m × 0.8 m aquarium tank under a recirculatory system. Water quality, fecundity, fertilization rate and survivability of fish were determined. The data collected were analyzed using analysis of variance (ANOVA) at p < 0.05 significant level.

The percentage fertilization was 62.34*, 61.98* and 62.75* for T1, T2 and T3 respectively. The percentage hatchability was 52.11 a, 50.32 a and 51.51 a for T1, T2 and T3 respectively. The survivability result shows relatively high survival rate in treatment T1 and T2, while the rate of survival in T3 was very low.

Egg combination does not have effect on fertilization rate and hatchability of eggs; however, it reduces the survival of larvae. In order to increase survival of catfish fry, it is important to avoid mixture of eggs from multiple brood fish.

Keywords: Aquaculture; Fish breeding; Artificial insemination; Catfish

Introduction

World aquaculture has grown tremendously during the past two decades to becoming an economically important industry [1]. According to [2], aquaculture continues to grow more rapidly than all other animal food-producing sectors, with an average global annual growth rate of 8.8% per year since 1970, compared to only 1.2% for capture fisheries. Globally, aquaculture is expanding into two new directions, intensifying and diversifying. Intensive fish culture has the capacity to produce large quantity of fish per unit space but seldom exists without an efficient fish seed production [3]. Fish seed production is an important aspect of aquaculture that has witnessed continuous research and innovation for increased fish production. Artificial propagation methods constitute the major practicable means of providing enough quality seed for rearing in confined fish enclosure waters such as fish ponds, reservoirs and lakes [4]. Catfish fish seed production is not left out as it represents a valuable fish species most especially in Africa. This fish exhibit a seasonal gonadal maturation which is frequently triggered by rainy season. The maturation processes of C. gariepinus in nature are generally influenced by annual changes in water temperature and photoperiodicity and the final triggering of spawning is usually caused by rise in water level due to rainfall [5]. In captivity, catfish does not spawn by itself, except the environment is especially in Africa. This fish exhibit a seasonal gonadal maturation affecting the low output. As a result of this backdrop, this project is aimed to study the effects of Catfish (Clarias gariepinus) on homestead artificial propagation, growth and morphometric characteristics of the African catfish (Clarias gariepinus). Despite all these researches, there still exist a wide gap between fish seed demand and supply. However, the insufficiency of supply and relatively high cost of fingerlings of Clarias gariepinus [11], resulting from low output per breeding attempt, indicates the need to widen the scope of factors affecting the low output. As a result of this backdrop, this project is aimed to study the effects of catfish (Clarias gariepinus) brood-stocks' egg combination on hatchability and survival of fish larvae.

Materials and Methods

Brood-stock selection and management

Eight samples, (4 males and 4 females) gravid Clarias gariepinus

*Corresponding author: Onada Olawale Ahmed, University of Ibadan, Nigeria, Tel: +234-000-00-0000; E-mail: onadaolawale@gmail.com

Received December 26, 2016; Accepted January 19, 2017; Published January 21, 2017

Copyright: © 2017 Onada OA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
brood stock size ranging from 800-900 g total body weight (TBW) were gotten from the brood-stock tank of the Universite Africaine De Technologie Et De Management, UATM, Benin Republic. This is done after examination for gonad development according to the method of [12]. Male brood-stocks were examined for rigid and reddish infusion of the genital papillae and female genital orifice were examined for reddish infusion, distension of the belly and release of eggs when gentle pressure was applied on the abdomen. Before stocking, the brood fish was disinfected with 0.5 % salt bath 5 g NaCl/litre water temperature of 25°C to 28°C according to the method of [13]. Bathing was done by dipping the fish into the solution for fifteen minutes. They were later acclimatized for 2 weeks in holding indoor fibre glass of 1000 L water holding capacity and maintained under optimum temperature.

Hypophysation of brood-stock

Two brood-stocks were selected from the pre-selected sample. They were weighed individually and intramuscular injection with pituitary gland hormone earlier extracted from catfish was applied at dosage of 3 mg kg^{-1} of body weight [14]. During injection, fish receives finger rubs to prevent back flow of fluid. Once they were injected, each treatment fish were labelled T1 and T2 and was kept in different water holding tanks for 14-16 hours in the hatchery.

Fertilization and spreading of eggs on hapa

The male was sacrificed to obtain the gonads which house the milt. At the expiration of the latency period, the females were carefully removed, moped with towel and hand stripped manually for eggs. Slight pressure was applied on the abdomen of the female brooder, and this led to the ovulated eggs to ooze out easily from the genital opening which was collected in plastic bowl. A sample of 20 unfertilized eggs from each female size class was taken to determine egg sizes. The eggs obtained from stripping each brood-stock were weighed, followed by several drop of creamy milt squeezed over the eggs with dry hands. The bowl is then gently swirled to mix the eggs and milt, feather is also used to mixed egg and milt together so as to ensure that the milt mix properly. 0.9% (NaCl) saline solution [15] was added to facilitate fertilization. After 45 seconds to one minute, no further fertilization can take place as the sperms are no longer motile. 1/3 of the eggs collected from T1 and T2 were combined and recorded as T3. Each of T1, T2 and T3 where then divided into three equal part as replicate for the three treatment. This was labelled T11, T12, T13, T21, T22, T23, T31, T32, T33. Each of the replicated fertilised egg was spread in a monolayer pattern on a 1 mm diameter net in nine 0.8 m × 0.8 m × 0.8 m aquarium tanks under a recirculatory system (Table 1).

Fertility rate and hatchability rate

After a certain period of incubation before hatching sub samples of eggs (1gm) kept on separate net were examined to assess the fertility rate (%) and hatchability rate (%) as determined from counting the number of active larvae. Prior to hatching, three sample plots were determined on the screen, and the number of fertilized and unfertilized eggs was counted physically for each treatments. The fertilized eggs were green, transparent and flattened whereas the unfertilized ones were whitish in color and thick. The FR% was computed based on the formula [16].

<table>
<thead>
<tr>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>T11</td>
<td>T21</td>
<td>T31</td>
</tr>
<tr>
<td>T12</td>
<td>T22</td>
<td>T32</td>
</tr>
<tr>
<td>T13</td>
<td>T23</td>
<td>T33</td>
</tr>
</tbody>
</table>

Table 1: Treatment T1, T2 and T3 with their replicate.

Water quality determination

The water quality of the system of culture was monitored daily, parameters like pH, Dissolved Oxygen (DO), Nitrite and temperature were measured during the trials using HATCH analysis water testing kit model FF-1A following method described by [19], the analysis were done immediately after water samples collection [20] (Table 2).

Results and Discussion

Water quality parameters

During the study period water qualities parameters were measured and the result is presented in the Table 3 below:

<table>
<thead>
<tr>
<th>Chemical and physical features</th>
<th>Desired Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissolved Oxygen (DO)</td>
<td>6mgL^{-1}</td>
</tr>
<tr>
<td>Water pH</td>
<td>7-7.5</td>
</tr>
<tr>
<td>Temperature</td>
<td>27°C-30°C</td>
</tr>
<tr>
<td>Ammonium (NH4)</td>
<td>0.5mgL</td>
</tr>
</tbody>
</table>

Table 2: Water quality requirements of african catfish hatchery.

<table>
<thead>
<tr>
<th>Water Quality Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td>T3</td>
</tr>
<tr>
<td>28.35 ± 0.10</td>
<td>28.21 ± 0.07</td>
</tr>
<tr>
<td>28.11 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Dissolved Oxygen (mg/L)</td>
<td>5.29 ± 0.08</td>
</tr>
<tr>
<td></td>
<td>5.28 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>5.28 ± 0.05</td>
</tr>
<tr>
<td>pH</td>
<td>7.34 ± 0.17</td>
</tr>
<tr>
<td></td>
<td>7.44 ± 0.19</td>
</tr>
<tr>
<td></td>
<td>7.34 ± 0.09</td>
</tr>
<tr>
<td>Ammonia (mg/L)</td>
<td>0.4 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>0.4 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>0.3 ± 0.10</td>
</tr>
</tbody>
</table>

Table 3: Measured water quality parameters.

\[
FR% = \frac{No. of fertilized eggs \times 100}{Total No. of ova collected}
\]

The hatchability rate was calculated as described [8]

\[
HR% = \frac{No. of hatched eggs \times 100}{Total No. of eggs incubated}
\]

Survivability evaluation was observed for a period of about 1-5 weeks. The post-hatching survivability was evaluated as described by [17] as adopted by [18].

\[
% Survival = \frac{(Total no. of larvae – No. of dead larvae) \times 100}{Total no. of larvae}
\]

The dissolved oxygen (DO) concentration measured was with
mean value of 5.29 ± 0.08; 5.28 ± 0.09 and 5.28 ± 0.05 for T1, T2 and T3 respectively. There was no significant difference (p>0.05) in dissolved oxygen concentration among all treatments during the study periods. The range oxygen recorded in this study slightly varies but fell within the recommended values. These values agree with those of [22], they also pointed out that the minimum dissolved oxygen should be 5 mg/l for tropical fish (Figure 2).

pH value

The pH concentration measured was with mean value of 7.34 ± 0.17; 7.44 ± 0.19 and 7.34 ± 0.09 for T1, T2 and T3 respectively. There was no significant difference (p>0.05) in pH concentration among all treatments during the study periods. The range pH recorded in this study was slightly varies but fell within the recommended values. The
The fecundity of brood stock used during the experiment shows no significant difference between the two treatments as T1 has fecundity of 235,345 while T2 has 222,549 as presented in Table 3. The range of the pH obtained from this study was (6.89-7.10), this is within the desirable range for pond pH is 6.5-9.5 and acceptable range is 5.5-10.0 [23]. The range of the pH obtained from this study was (6.89-7.10), this agreed with [23] (Figure 3).

Ammonia

The Un-ionized ammonia concentration measured was with mean value of 0.4 ± 0.04, 0.4 ± 0.06 and 0.3 ± 0.10 for T1, T2 and T3 respectively. There was no significant difference (p>0.05) in Un-ionized ammonia concentration among all treatments during the study periods. The range Un-ionized ammonia recorded in this study was 0.45, 0.35, 0.25, 0.15 mg/l [24] (Figure 4).

Fecundity

The fecundity of brood stock used during the experiment shows that no significant difference between the two treatments as T1 has fecundity of 235,345 while T2 has 222,549 as presented in Table 3. This must have been as a result of close weight range of the brood stock used in the experiment or probably a coincidence. As several results have shown variation in fecundity of brood stock, although variation in fecundity within a common trait of similar-sized fish species could be attributed to hormone administration rate, breeding history, maturity stage, and other external environmental factors [25].

Percentage fertilization

The results of the experiment show no significant difference in the percentage fertilization recorded as presented in Table 3. The percentage fertilization was 62.34%, 61.98%, and 62.75% for T1, T2 and T3 respectively.

Percentage hatchability

The results of the experiment show no significant difference in the percentage hatchability recorded as presented in Table 3. The percentage hatchability was 52.11%, 50.32% and 51.51% for T1, T2 and T3 respectively.

Survivability

The survivability result presented in Table 4 shows relatively high survival rate in treatment T1 and T2, while the rate of survival in T3 was very low. At the end of the 5th week the survival percentage were 85.3%, 87.3% and 2.7% for T1, T2 and T3 respectively. The lower survival of T3 as observed in the experiment was due to the development of some fast growing population in the stock. The fast growing population was observed to cannibalize on the slower growing population thereby suppressing their population (Table 5).

Conclusion and Recommendations

Physical observation during the study confirm two developmental stage of fish after the 3rd day, some population were actively and vigorously seeking to feed, while some population have not fully absorbed their yolk. This could be linked with the combination of eggs from different brood-stock; this made some population or strain to develop faster than the other. Possibility will arise that the difference in developmental stages increases with the increase in the number of female brood fish used. From day 7 to 14 cannibalism surfaced: attacks between different sizes of fish occurred, where the weaker and the slow growing one were seriously affected. The mostly attacked parts are tails, mostly broken with body wounds, eventually dead. Combination of eggs from different female brood fish could hamper the chances of survival. It is however important to strip female eggs separately to have a good survival result.

References

