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Introduction
In recent years considerable interest has been developed in the 

study of the flow of third grade fluid through an inclined parallel 
plate because of its important applications in science, engineering 
and technology. Some of these applications can be found in materials 
manufactured by extraction process especially in polymer processing, 
micro fluids, geological flows within the earth’s mantle, the flow of 
synovial fluid in human joints as well as in the drilling of oil and gas 
wells. Nayak et al. [1] study the unsteady convective flow of a third 
grade fluid past an infinite vertical porous plate with uniform suction 
applied at the plate. They reduced governing non linear partial 
differential equations arising from the problem to a system of non-
linear algebraic equations using implicit finite difference scheme and 
is then solved these equations using derived Newton method.  Erdogan 
[2] considered the flow of a third grade fluid in the vicinity of a plane
wall suddenly set in motion. He observes that for short time a strong 
non-Newtonian effect is present in the velocity field. For more list of 
references concerning this work, we refer to the articles by Hayat et al. 
[3] and Roohi et al. [4], But Siddidui et al. [5] studied hydrodynamics
third grade fluid between two parallel plates with heat transfer. They
considered and treated three different problems, the Poiseuille flow, the 
Couette flow and the Poiseuille-Couette flow. The governing nonlinear 
differential equations for velocity and temperature of the fluid were
also derived and solved using homotopy perturbation method. In
this work, we extend the work of Siddiqui et al. [5] in two ways (i) to
consider that the fluid is flowing down through inclined parallel plates
and (ii) subjected the whole system into the magnetic field and analyze 
the effect of magnetic field on MHD flow.

Problem Formulation
The fundamental equations governing the MHD flow of an 

incompressible electrically conducting fluid are the field equation:

0v∇⋅ =    (1)

Dv p div J B f
Dt

ρ τ ρ= −∇ + + × + 			                 (2)

where ρ is the density f the fluid, v is the fluid velocity, B is the magnetic 
induction so that

0B B b= +                   (3)

and

( )J E v Bσ= + × 				     (4)

is the current density, σ  is the electrical conductivity, E is the electrical 
filed which is not considered (i.e E=0), B0 and b are applied and induced 
magnetic field respectively, D

Dt  denote the material derivative, p is
the pressure, f is the external body force and T is the Cauchy stress 
tensor which for a third grade fluid satisfies the constitutive equation
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where pI is the isotropic stress due to constraint incompressibility, µ 
is the dynamics viscosity, 1 2 1 2 3, , , ,α α β β β  are the material constants;    
⊥ indicate the matrix transpose, 1 2 3, ,A A A  are the first three Rivlin-

Ericken tensors and A0=I  is the identity tensor [6-11].

Couette flow

We consider a steady MHD flow of a third grade fluid through 
a infinite parallel plates of distant 2h  apart, inclined horizontally by 
angle φ. The upper and lower plates are at y=h and y=-h of a rectangular 
system with the x-axis as flow direction. The upper plate is assumed 
to be moving with constant speed U while the lower plate is kept 
stationary. The plates are maintained at two different but constant 
temperatures with upper plate simultaneously subjected to a step 
change in temperature T∆ . A uniform magnetic field B0 is applied 
in positive y-direction and is assumed undisturbed as the induced 
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magnetic field is neglected under the assumption of small magnetic 
Reynolds number. The ambient air is assumed stationary so that the 
flow is due to movement of upper plate and gravity alone.

By seeking a velocity field of the form

[ ( ),0,0,]v u y= 				                                  (7)
In the absence of modified pressure gradient, equation (1)-(4) along 

with equation (5)-(7) after introducing the following non dimensional 
parameter

0, ,
T T

u Uu y yh T
T
−

= = =
∆

			                    (8)

yield
22 2

2 26 0u u u K Mu
y y y

β
 ∂ ∂ ∂

+ + − = ∂ ∂ ∂ 
			                 (9)

with the boundary conditions

( 1) 0, (1) 1u u− = = 				                 (10)
Also, the thermal boundary layer equation for the thermodynamically 

compatible third grade fluid with viscous dissipation, work done due to 
deformation and joule heating in a non dimensional form is given as 

2 42
2

2 2 0r r r
d T du duB B B Mu
dy dy dy

β
   

+ + + =   
   

	                 (11)

with the boundary				  

( 1) 0, (1) 1T T− = = 				                    (12)

where

( ) 2
2 3 U

h
β β

β
µ
+  =  

 
is third grade fluid parameter

1 sinK f φ= while 
2
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U
ρ
µ

=  is the gravitational parameter.

2 2
0h B

M
σ
µ

=   is the magnetic parameter.

2

r
UB

k T
µ

=
∆

  is the Brinkman number

Poiseuille flow

In this case, both the upper and lower plates are kept stationary and 
we assumed that the fluid motion is due to gravity alone.

Therefore, in the absence of modified pressure gradient, equation 
(9) and (11) remain the same after scaling given by (8) while boundary 
conditions (10) and (12) becomes	

( 1) 0, (1) 0u u− = = 				                 (13)

( 1) 0, (1) 1T T− = = 				                    (14)

Couette-poiseuille flow

Because we considered that the flow is due to gravity and the 
movement of upper plate while the modified pressure gradient is 
neglected, the momentum and energy equations with their boundary 
conditions for Couette-Poiseuille flow will result to that of the Couette 
flow. 

Therefore, we solve problem in subsection (2.1) and (2.2) by 
traditional perturbation method while the problem involved in 

subsection (2.3) is identical to the problem in subsection (2.1) because 
of our assumption.

Solution of the Problems
Couette flow

Let us assume ε  as a small parameter in order to solve equation (9) 
with equation (10), we expand

2
0 1 2( , ) ( ) ( ) ( )u y u y u y u yε ε ε= + + + ⋅⋅⋅⋅⋅                              (15)

We first find the solution for section (2.1) (i.e Couette flow) by 
substituting equation (15) into equation (9) and (10) and rearranging 
based on powers of  ε − terms.

We obtain the following problems of different order with their 
boundary conditions and solutions:

Zeroth–order problem
2

0
2 0

d u
Mu K

dy
− + = 				                 (16)

0 0( 1) 0, (1) 1u u− = = 				                 (17)

with the solution

0 1 2
y M y M Ku c e c e

M
−= + + 			               (18)

where 
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First order problem
222

0 01
12 26 0

d u dud u Mu
dy dy dy

 
+ − = 

 
			               (19)

1 1( 1) 0, (1) 0u u− = = 				                  (20)

with solution

( )
( )

3 3
1 3 4 5 6

7 8

y M y M y M

y M

u c e c e c c y e

c c y e

−

−

= + + +

+ +
	              (21)

Second order problem				  

2 22 2
0 0 02 1 1

2 2 2

2

6 12

0

du du d ud u d u du
dy dy dy dy dy dy
Mu

 
+ + 

 
− =

 (22)

2 2( 1) 0, (1) 0u u− = =   			                                   (23)

with solution

( ) ( )
( )
( )
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2 19 20
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2
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2
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y M y M

y M y M

y M
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c c y c y e
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−

−

−

= + +

+ + +

+ + +

+ + +

                             (24)



Citation: Aiyesimi YM, Okedayo GT, Lawal OW (2014) Effects of Magnetic Field on the MHD Flow of a Third Grade Fluid through Inclined Channel 
with Ohmic Heating. J Appl Computat Math 3: 153. doi:10.4172/2168-9679.1000153

Page 3 of 6

Volume 3 • Issue 2 • 1000153
J Appl Computat Math
ISSN: 2168-9679 JACM, an open access journal 

By using equation (18), (21) and (24) in equation (15), we obtain

( )
( )

( )
( )
( )
( )

1 2

3 3
3 4

5 6

7 8
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−
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−

−

−

−

= + +

 +
 
 + + +
 
 + + 
 + 
 + +
 
 + + +
 
+ + + 
 
 + + + 

             	               (25)

Next, we find the approximate solution for temperature 
distribution, for which we write

2
0 1 2( , ) ( ) ( ) ( )T y T y T y T yε ε ε= + + + ⋅⋅⋅ 		              (26)

Substituting equation (26) into equation (11)–(12) and collecting 
the same power of ε , yields different order problems with boundary 
conditions and solutions

Zeroth –order problem 
22

0 0
02 0r

d T du
B Mu

dy dy

  
 + + = 
   

			                 (27)

0 0( 1) 0, (1) 1T T− = = 				                   (28)

with solution
2 2

0 31 32 33

2
34 35 36 37

y M y M y M

y M

T c e c e c e

c e c y c y c

−

−

= + +

+ + + +
		               (29)

First –order problem
42

0 01 1
0 12 2 0r

du dud T duB Mu u
dy dy dy dy

  
 + + + = 
   

	                                  (30)

1 1( 1) 0, (1) 0T T− = = 				                  (31)

with solution

( )
( ) ( )
( )

4 4 3
1 51 52 53

3 2
54 55 56
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61 62 63 64 65

y M y M y M

y M y M

y M y M

y M

T c e c e c e

c e c c y e

c c y e c c y e

c c y e c y c y c

−

−

−

−
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+ + +

+ + + +

+ + + + +

(32)

Second–order problem 

2

0 2 1
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2
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2 2( 1) 0, (1) 0T T− = = 				                 (34)

with the solution
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3
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19 120 121y c y c+ + +

               (35)

By using equation (29), (32) and (35) in equation (26), we obtain

( )
( )
( )
( )

2 2
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2
34 35 36 37
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
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                                    (36)

where the constant  c3-c121 can be calculated through simple computation.

Poiseuille flow

Next we consider approximate solutions for problem in section 
(2.2). We used momentum equation (9) and energy equation (11) 
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with boundary conditions (13) and (14) respectively. By substituting 
equation (15) and (16) into equation (9) and (11) respectively, we 
obtained different order problems which are identical to those in 
section (3.1) except the boundary conditions (17) of Zeroth order 
problem of equation (9) which becomes		

0 0( 1) 0, (1) 0u u− = = 				                  (37)

The solutions obtained for problem in section (2.2) (i.e.  Poiseuille 
flow) are identical to those in section (3.1) (i. e. couette flow) except 

( )1 2 M M

Kc c
e e M−

= = −
+

Couette-Poiseuille flow

Since the problem involved in subsection (2.3) (i.e Couette– 
Poiseuille flow) is identical to the problem in subsection (2.1) (i.e 
Couette flow) base on our assumption, we obtained the same solution.

Results and Discussion
We shall proceed to discuss three flow problems namely, Couette 

flow, Poiseuille flow and Couette-Poiseuille flow of a third grade fluid 
between two inclined parallel plates with heat transfer. Also, both 
Couette flow and Couette-Poiseuille flow have the same solution base 
on our assumption. Therefore we discussed and shown graphically 
(Figures 1-6) the effects of magnetic field and gravitational parameter 
on velocity and temperature profile of Couette and Poiseuille flow.	

In Figure 1a (i.e Couette flow), it is observed that fluid velocity 
decreases with increase in magnetic parameter M and the rate at which 
the flow of the fluid decreases is less apparent near the lower plate to the 
upper plate.  This is due to the fact that the rate of transport of the fluid 
is considerably reduced near the moving upper plate than the stationary 
lower plate as the magnetic parameter increases. In Poiseuille flow (i.e. 
Figure 2a), velocity of the fluid decreases with increases in magnetic 
field parameter and the flow of the fluid decreases equally from the 
stationary lower plate to the stationary upper plate. It clearly shows 
that the transverse magnetic field opposes the transverse phenomena.  
Figures 1b and 2b illustrates the graphical representation of the 
temperature profiles T for various values of physical parameters. It is 
noticed from figures that the fluid temperature increases with increases 
in magnetic parameter M. And the rate at which the temperature of the 
fluid increases is less apparent from the stationary lower plate to the 

(a)

(b)
Figure 1:  Effect of magnetic parameter M on velocity and temperature profile of 
Couette flow when K=1, Br=5 and 0.001ε = .

(a)

(b)
Figure 2: Effect of magnetic parameter M on Velocity and temperature profile of 
Poiseuille flow when K=1, Br=5 and 0.001ε = .
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moving upper plate in Figure 1b. This clearly shows that an increase in 
magnetic parameter lead to increase on Joule heating thereby increases 
the temperature of the fluid.

Figures 3 and 4 shows the effect of gravitational parameter K on 
velocity and temperature profile at a low magnetic field (i.e. when  
M=5). It is observed that the velocity increases rapidly from the moving 
upper plate to the stationary lower plate in Figure 3a while in Figure 
4a, the velocity of the fluid increases through the two stationary plates 
as gravitational parameter K increases. However, in Figures 3b and 4b 
the temperature rapidly rises with increase in gravitational parameter   
K and is higher in Figure 3b due to the fact that in Couette flow the 
movement of upper plate increases the fluid velocity thereby increases 
Joule dissipation.

Figures 5 and 6 illustrate the effect of gravitational parameter K 
on velocity and temperature profile at a high magnetic field (i.e when  
M=20). It is observed that the rate at which the velocity increases 
reduced rapidly from the moving upper plate to the stationary lower 
plate in Figure 5a while in Figure 6a, the rate at which the velocity 
of the fluid increases through the two stationary plates is reduced as 
gravitational parameter K increases. However, in Figures 5b and 6b the 
temperature rapidly increases with increase in gravitational parameter 
K.

(a)

(b)
Figure 3: Effect of gravitational parameter K on velocity and temperature profile 
of Couette flow when M=5, Br=5 and 0.001ε = .

(a)

(b)
Figure 4: Effect of gravitational parameter K on velocity and temperature profile 
of Poiseuille flow when M=5, Br=5 and 0.001ε = .

(a)

(b)

Figure 5: Effect of gravitational parameter K on velocity and temperature profile 
of Couette flow when M=20, Br=5 and 0.001ε = .
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The following conclusion can be drawn from the computed results:

• The effect of magnetic field parameter is to decrease velocity
profile and increase the temperature profile in the boundary layer as 
fluid is flowing down through the plates.

• The effect of gravitation parameter is to increase the velocity and
temperature profile at low magnetic field and decrease them at high 
magnetic field.

• We can regain the results of Newtonian fluid when 0β = .
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with heat transfer was approximated analytically. The governing non-
linear differential equations involved are solved using the traditional 
perturbation method. The effects of magnetic and gravitational 
parameters on velocity and temperature profile for Couette and 
Poiseuille flows have been discussed and are shown graphically. 
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