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Abstract

The present study evaluates in Clarias gariepinus the oxidative damage associated with two sub-chronic
exposures to mercury chloride. The destructive effects of mercury chloride on the African Catfish, Clarias gariepinus
was revealed in terms of protein carbonyl (PC), lipid peroxidation (LPO), DNA damage and nitric oxide (NO) as
oxidative stress biomarkers. Super oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx),
glutathione reductase (GR), glutathione-s-Transferase (GST), glutathione (GSH) and total antioxidant (TAO) in the
gills, kidney and liver can be used as biomarkers to identify possible environmental contamination in fish. This study
aimed to investigate the impact of HgCl2 (0.04 and 0.12 ppm) for 14 and 28 days of the activity of the selected
parameters in different tissues of Clarias gariepinus.

The activity of SOD, CAT, Gpx and TAO dropped when compared to the control groups without mercury chloride
exposure in all tissues under investigation. The pattern of variations in GST, GR and GSH activity in mercury-
induced groups were significantly increased than that of the control group. Also, NO, CP, LPO and DNA damage,
were recorded with a pattern of a significant increase toward exposure period in all tissues under investigation.
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Introduction
The impact of heavy metals on biomarkers of oxidative stress is bio-

indicators of aquatic pollution in Clarias gariepinus [1]. It is known
that Hg has a high affinity to thiol-containing molecules such as
glutathione (GSH) [2], which are required for Hg transport and
detoxification in biological systems [3]. Environmental exposure to Hg
can interfere with physiological as well as biochemical activities
through the oxidative stress [4]. This stress is generated in cells
through an increase in the production of reactive oxygen species
(ROS) as superoxide anion radical (O2-), hydrogen peroxide (H2O2),
and hydroxyl radicals (OH), or decrease in the antioxidant that
modifies ROS to the less reactive intermediate and prevent diseases by
scavenging free radicals [5].

Oxidative stress may produce DNA damage, protein oxidation,
nitric oxide formation and peroxidation of cell constituents, especially
lipid peroxidation when antioxidant defenses are impaired or
overcome [6]. Enzymatic antioxidant defense mechanism includes
superoxide dismutases (SOD), catalase (CAT) and glutathione
peroxidase (GPX), as well as the enzymes involved in the recycling of
GSH, and generation of NADPH [7]. The GSH and other thiols
depletion will render cells more susceptible to oxidative damage, while
elevated antioxidant enzymes activity will counteract it to a certain
extent [8]. Glutathione, specifically bind with mercury, forms a
complex that prevents Hg from binding to cellular proteins and
causing damage to tissue [9-12]. Both GSH and cellular antioxidant
enzymes play an important role in HgCI2 induced tissues injury
[8,13,14].

Fish, as biomonitor species, plays an increasingly important role in
the monitoring of aquatic environment, due to its great sensitivity to
environmental changes. Thus, the aim of this study was to determine
oxidative stress biomarkers and antioxidant parameters as a response
to Hg exposure at low and moderate doses in three organs of Clarias
gariepinus after 14 and 28 days of exposures.

Materials and Methods

Fish
Forty eight adult African catfish Clarias gariepinus were caught

from the fish farm of Faculty of Agriculture, Assiut University, Egypt.
Fish immediately were transported to the fish laboratory in the
Department of Zoology, Faculty of Science, Assiut University. The fish
(225-250 g) were fed on a commercial pellet diet (2% of body weight
per day) and kept in 180 L rectangular tanks containing tap water
(conductivity 2000 ls/cm; pH 7.4; oxygen 90–95% saturation;
temperature 2°C; photoperiod 12:12 light: dark). After 2 week
acclimation, fishes were classified into three groups (16 fish per each):
control and two Hg-treated groups (0.04 and 0.12 ppm, Ibrahim,
2011) for 14 and 28 days of exposure.

Organs collection and preparations
Gills, kidney and liver were carefully excised, surface dried with

filter paper, thoroughly washed with 50 mM phosphate buffer pH 7.4
and homogenized with 50 mM phosphate buffer pH 7.4 containing, 1
mM EDTA, 1 mM DTT, 0.15 M KCl, 0.01% PMSF. Homogenization
was carried out at about 4°C using 12–15 strokes of a motor driven
Teflon Potter homogenizer and centrifuged at 10,000 rpm for 20 min
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at 4°C and the obtained supernatants were used for determination of
antioxidants and oxidative stress biomarkers.

Antioxidants and oxidative stress biomarkers
Total protein contents were determined by Lowry method [15].

Lipid peroxidation was measured according to the method of Buege
and Aust [16]. DNA fragmentation was determined by the procedure
of Kurita-Ochiai et al. [17]. Carbonyl protein was determined by the
method of Levine et al. [18]. The NO concentration was determined by
Griess reaction as described by Sessa et al. [19]. Total SOD activity was
measured as described by McCord and Fridovich [20]. Catalase
activity was measured as described by Aebi [21]. GPX activity was
estimated using the method of Flohe and Gunzler [22]. Glutathione S-
transferase (GST) was measured using 1-chloro-2,4-dinitrobenzene
(CDNB) as a substrate as described by Habig et al. [23] and adapted to
a microplate reader by Stephensen et al. [24]. The GSH level was
measured following the methods described by Cohn and Lyle [25]. GR
activity was assayed according the method described previously by
Styblo and Thomas [26]. The TAO was measured using a colorimetric
assay kit (Randox Laboratories, Crumlin, U.K.) and values are
expressed as mmol/L.

Statistical analyses
Data are expressed as mean ± Std. Err. Statistical significance was

evaluated by ANOVA. Differences were considered significant at
P<0.05 using the statistical software SPSS version 16.

Ethical statement
All experiments were carried out in accordance with the Egyptian

laws and University guidelines for the care of experimental animals.
All procedures of the current experiment have been approved by the
Committee of the Faculty of Science of Assiut University, Egypt.

Results
The biomarkers of oxidative stress and antioxidant analyzed

showed significant variation (p<0.05), (p<0.01) and (p<0.001) when
compared with control. As indexes of antioxidant status, the levels of
LPO (assessed by MDA content), DNA fragmentation, CP, and NO
TAO,GST, GR, SOD, CAT, GSH and GPx activities were measured for
evaluating the presence of oxidative stress in adult Clarias gariepinus
catfish by exposure to (0.04 and 0.12 ppm) of HgCl2 for 14 and 28
days. The oxidative stress biomarkers; MDA, CP, DNA fragmentation
and NO levels were increased after the exposure doses dependent
manner with an upward trend (Figure 1A-1D).

The effects of sub lethal doses (0.04 and 0.12 ppm) of mercury
chloride on gills, kidney and liver of C. gariepinus after 14 and 28 days
of exposure are shown in Figure 1.

The oxidative stress biomarkers; LPO, CP, DNA fragmentation and
NO showed highly significant increases in the gills, kidney and liver
(P<0.001) after exposed to 0.12 ppm HgCl2 for 28 days and a
significant (P<0.05) increase in tissues under investigation after
exposed to 0.04 ppm mercury for 14 days comparing with the control
group (Figure 1A-1D). Also, except for TAO non enzymatic
antioxidant (GSH, GR and GST) showed a significant increase
(p<0.05) in 0.04 ppm mercury chloride and significant increase
(P<0.01) and (P<0.001) in 0.12 ppm mercury exposed group when
compared with the control one (Figure 2A-2C).

Figure 1: Levels of Oxidative stress biomarkers (A): lipid
peroxidation, (B): Carbonyl Protein, (C): DNA fragmentation and
(D): Nitric Oxide in the gills, kidney and liver of C. gariepinus
exposed to HgCl2 (T1=0.04 and T2=0.12 ppm) for 14 and 28 day.
*Significant differences between treatments and control oxidative
stress biomarkers (p<0:05). **Significant differences between
treatments and control oxidative stress biomarkers (p<0:01).
***Significant differences between treatments and control oxidative
stress biomarkers (p<0:001).

However, TAO exhibited a significant decrease (p<0.05) in 0.04
ppm mercury chloride and significant decrease (P<0.01) and
(P<0.001) in 0.12 ppm mercury exposed group when compared with
the control one (Figure 2D). The results of enzymatic antioxidant
(CAT and SOD) in different tissues of C. gariepinus showed a
significant decrease (p<0.05) in 0.04 ppm mercury chloride and
significant decrease (P<0.01) and (P<0.001) in 0.12 ppm mercury
exposed group when compared with the control group (Figure 3A and
3B). Also, GPx exhibited a significant decrease (p<0.05) in 0.04 ppm
mercury chloride and a significant decreases (P<0.01) in 0.12 ppm
mercury exposed group when compared with the control one (Figure
3C).

Discussion
The excess production of ROS by Hg may be explained by its ability

to produce alteration in mitochondria by blocking the permeability
transition pore. Hg2+ reacts with thiol groups (-SH), thus depleting
intracellular thiol, especially GSH and causing cellular oxidative stress
Gstraunthaler et al. [27]. Scavenging enzymes at lower concentration
fish makes them vulnerable to oxidative damage when attacked by
ROS [28]. Removal of H2O2 is an important strategy of aquatic
organisms against oxidative stress [29]. The present study showed a
significant increase in LPO after the exposure of HgCl2. Similar results
was obtained by Mahboob et al. and Park [30,31]. Moreover, It has
been demonstrated that Hg decreases the antioxidant systems and
produces oxidative damages via H2O2 generation thereby leading to
LPO [13,14]. Therefore, an increase in LPO by HgCl2 may induce
membrane biochemical and functional alterations [9,32].

Mercury causes cell membrane damage leads to the imbalance
between synthesis and degradation of enzyme protein [33]. The
present study showed a significant increase of carbonyl protein (CP) in
all tissues of fishes exposed to HgCl2.
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Figure 2: Activities of non-enzymatic antioxidant (A): Glutathione,
(B): Glutathione reductase, (C): Glutathione-S-Tranferase and (D):
Total Antioxidant in the gills, kidney and liver of C. gariepinus
exposed to HgCl2 (T1=0.04 and T2=0.12 ppm) for 14 and 28 day.
*Significant differences between treatments and control non
enzymatic antioxidant activities (p<0:05). **Significant differences
between treatments and control non enzymatic antioxidant
activities (p<0:01). ***Significant differences between treatments
and control non enzymatic antioxidant activities (p<0:001).

Figure 3: Activities of enzymatic antioxidant (A): Catalase, (B):
Super Oxide Dismutase and (C): Glutathione Peroxidase in the
gills, kidney and liver of C. gariepinus exposed to HgCl2 (T1=0.04
and T2=0.12 ppm) for 14 and 28 day. *Significant differences
between treatments and control enzymatic antioxidant activities
(p<0:05). **Significant differences between treatments and control
enzymatic antioxidant activities (p<0:01). ***Significant differences
between treatments and control enzymatic antioxidant activities
(p<0:001).

This increase in CP agrees with the observations of Labieniec and
Parveza, Verlecar et al. [4,34,35] they found that fishes exposed to
Hg2+ showed an increase in CP content because mercuric ions are
known to induce oxidative stress by triggering ROS through
mitochondrial electron transport chain in the animals [36,37].
Carbonyl compounds are toxic due to their carcinogenic properties.
Their presence in the environment has a great concern as regard to
their adverse effects to health [38]. Similar results were obtained by
Perluigi et al. who described the elevated level of CP was not surprising
considering that because of the function of the redox sensitive protein
depending on the elevation of ROS [39].

Nitric oxide level showed an increase in all tissues under
investigation after 14 and 28 days of HgCl2 treatment. It is known that
Hg2+ accumulation paralleled by the formation of NO. Excess NO can
rapidly react with O2• to form a potent and powerful long-lived
oxidant, peroxynitrite which can interact with nucleic acids [40,41].
Accordingly, the present study indicates that fish exposed to HgCl2, in
high and low doses, showed a significant increase in DNA
fragmentation percentage in comparison with the control group. This
results were in agreement with the study of Takenaka et al. who found
high level of DNA damaged in rat tissues that exposed to Hg [42].
DNA damage in Hg2+ exposed individuals suggests that Hg overload
induces an imbalance in the redox cycle [43]. Ariza et al. and Grotto et
al. showed that Hg is a reactive metal that bind to DNA, leading to
alterations in its structure, even at low levels [44,45]. Moreover,
concludes that Hg induced genotoxicity by production of ROS, which
react with DNA forming Hg species-DNA adducts; inhibition of the
DNA repair systems, and inhibition of mitotic spindle formation and
chromosome segregation [46].

The enzymatic antioxidant systems, which includes SOD, CAT,
GPx, GR, GST as well as TAO plays a coordinated role in the
prevention of oxidative damage by ROS [47]. The present study
showed a significant decrease in tissues CAT, SOD and GPx activities
in HgCl2 exposure fishes compared to control group. The SOD
removes superoxide by converting it into H2O2, which is rapidly
converted to water by CAT. Therefore, any alteration in the activity of
these two enzymes may result in several deleterious effects due to
accumulation of superoxide radicals and H2O2 [43]. Moreover, GPx
catalyzes the oxidation of GSH to GSSG, this oxidation reaction occurs
at the expense of H2O2. The scavenger role of antioxidant enzymes in
removing toxic electrophiles helps the cell to maintain its internal
environment to a limited extent at lower concentration of Hg. The
decrease in activities of SOD, CAT and GPx in different tissues of
HgCI2 treated fish may be due to the inhibition at these enzymes by
H2O2, because it is known that H2O2 involved in Hg induced acute
renal injury [32,48]. Moreover, inhibition of SOD activity may be
related to a covalent attachment of Hg2+ to its reactive cystine residues
that are involved in the detoxification of metals. In addition, SOD
inhibition might also been consequence of excess of residue that affect
enzyme structure [14,49]. The decrease in the level of CAT and GPx
activities occurred probably as a defense response against H2O2
generated by HgCl2 [9,11,49] Alternatively, SOD catalyzes superoxide
anion radical dismutation into H2O2 accordingly, SOD activity
inhibition could contribute to the enhanced oxidation observed in Hg-
treated fish. Since LPO induced by HgCl2 seems to be caused by
increased levels of O2• [32,42,49].

The present study, showed a significant increase in GST, GR and
GSH. Similarly, Vinodhini and Narayanan found that GST exhibited a
significant increase in the GST activity in aquatic organisms exposed
to Hg2+ [50] and Bharathi et al. for GR in rat [49]. Elevation of GST
activity could indicate a defense of fish against oxidative stress damage
and increase in water soluble metabolites that produced by HgCl2
treatment [51]. Metal contamination of coast of Spain caused increases
in GST activity and glutathione-related enzymes in tissues of Mytilus
galloprovincialis [52]. Mercury has a high affinity to GSH and can
bind and cause irreversible excretion of GSH and an increase in LPO
[53]. It has been reported that Hg2+ at low concentrations depletes
mitochondrial GSH and enhances H2O2 formation in rat kidney
mitochondria under conditions of impaired respiratory chain electron
transport [36]. The increase in GSH may indicate a faster rate of GSH
utilization or degradation, which could be responsible for the observed
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lower GSH content. Moreover, increase of GSH content may be
related to prevention of oxidative challenge [54]. Aquatic organisms
maintain high content of GSH in tissues and increased content has the
function of protection that could provide the first line of defense
against the influence of toxic heavy metals [51,55].

From the present results we conclude that exposure of fishes to
different doses of HgCl2 for different duration times caused oxidative
stress in liver, kidneys and gills as shown by increased LPO, NO, DNA
fragmentation and decreases in the non-enzymatic and enzymatic
antioxidants levels.
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