
Volume 1 • Issue 2 • 1000111
J Laser Opt Photonics
ISSN: 2469-410X JLOP, an open access journal 

Open AccessResearch Article

Aram and Khorasani, J Laser Opt Photonics 2014, 1:2
10.4172/2469-410X.1000111Journal of Lasers, Optics & Photonics

Jo
ur

na
l o

f L
as

ers, Optics & Photonics

ISSN: 2469-410X

DOI:

Efficient Analysis of Photonic Crystal Slabs
Mohammad Hasan Aram and Sina Khorasani*
School of Electrical Engineering, Sharif University of Technology, Tehran, Iran

*Corresponding author: Sina Khorasani, School of Electrical Engineering, 
Sharif University of Technology, Tehran, Iran, Tel: +98-21-6616-4352; E-mail: 
khorasani@sharif.edu

Received October 31, 2014; Accepted December 01, 2014; Published December 
12, 2014

Citation: Aram MH, Khorasani S (2014) Efficient Analysis of Photonic Crystal 
Slabs. J Laser Opt Photonics 1: 111. doi:10.4172/2469-410X.1000111

Copyright: © 2014 Aram MH, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Slab photonic crystal, Plane wave expansion method

Abbreviations: Slab PC: Slab Photonic Crystal; PWEM: Plane 
Wave Expansion Method; FDTD: Finite-difference Time-Domain; 
FEM: Finite-element method 

Introduction
Photonic crystals (PCs) are optical nanostructures which their 

electric permittivity is periodic in one, two, or three dimensions. This 
periodic permittivity affects photons in the same manner as periodic 
potential affects electrons in ionic crystals. As a result, electromagnetic 
waves in these materials are in the form of Bloch waves. There are some 
finite and continuous frequency bands in which electromagnetic waves 
cannot propagate in PCs. Existence of these bands which are called 
photonic gaps, is the main property of PCs. Lord Rayleigh, the English 
physicist, observed photonic gaps in a one-dimensional PC for the 
first time in 1887 [1], but until a century later, when Yablono vitch 
predicted the existence of photonic gaps in three-dimensional PCs [2], 
there were no uses of them.

Today, PCs have found many applications in different fields, such 
as performance improvement of solar cells [3-6], omnidirectional 
surfaces [7], optical fibers and waveguides [8-12], optical cavities [13-
15], high efficient LEDs [16], and integrated optics [17,18].

As mentioned above there exists three types of photonic crystals 
based on their permittivity periodicity dimensions. Obviously, 
fabrication of ideally perfect two and three-dimensional PCs with 
photonic gaps in optical frequencies is impossible due to their infinite 
extensions. For the case of two-dimensional structures, however, the 
third dimension may be confined to a finite extent, which is referred 
to as the slab PC. The permittivity of a slab PC is still periodic in 
two-dimensions but unlike the two-dimensional PCs, it depends on 
the third component that is perpendicular to the slab surface. For all 
practical reasons, every two- or three-dimensional photonic structure 
must be ultimately fabricated in the form of slabs, calling for the need 
to a three-dimensional accurate, stable, and rapid numerical analysis.

There are many different methods to calculate PC modes 
theoretically. Some of them are time-domain like finite-difference 
time-domain (FDTD) and others are frequency-domain like 
finite-element method (FEM) and plane wave expansion (PWE). 
Unfortunately calculation of slab PC modes with any of these methods 
is computationally too demanding and complicated well beyond the 

capability of ordinary personal computers. Moreover, for attaining 
higher accuracy in these methods larger divisions and/or expansion 
terms are needed, which for three-dimensional structures and slabs 
result in huge matrices. Time-domain approaches such as FDTD suffers 
from inherent numerical dispersion and anisotropy which cannot be 
overcome by simple choice of smaller divisions. On the other hand, 
in the frequency-domain methods, calculation of eigenvalues for such 
matrices would be another challenge, and is normally unstable with the 
growth of matrix size.

This paper reports a novel scheme to calculate the eigen modes 
and band structure of photonic crystal slabs. Our proposed scheme 
is much more efficient and stable compared to the other widely used 
approaches, as demonstrated in the paper. Theoretical analysis of 
applications such as quantum cavity electrodynamics [19] of quantum 
dots embedded in photonic nanostructure highly rely on knowledge of 
mode frequencies, profiles, and density of states, all of which demand 
highly efficient mode extraction techniques for slabs.

Accelerated and Stabilized PWEM
Here we explain how we can calculate Bloch modes of slab PCs in a 

much faster and stable way. In this method the size of the final matrix 
which its eigenvalues should be calculated is not reduced necessarily, 
but its preparation is much faster than the standard approach. The 
point should be considered here is that the computation cost in slab 
PC problem is mostly related to matrix preparation rather that its 
eigenvalue calculation. In this method, we expand the fields in terms 
of vector and scalar potentials instead of electromagnetic observable 
quantities.

We begin with the relation,

= Ñ´B A  					                     (1)
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between magnetic flux density, B and magnetic vector potential, A 
According to Maxwell’s equations we have

t
m
æ ö¶ ÷ç ÷Ñ´ = +ç ÷ç ÷ç ¶è ø

DB J ,				                   (2)

where µ is the space permeability, J is the electric current density, and 
D is the electric displacement field. If we take curl of both sides of (1) 
and use (2), we have

t
m
æ ö¶ ÷ç ÷Ñ´Ñ´ +ç ÷ç ÷ç ¶è ø

DA = J 			                 (3)

With the use of identity

( ) 2Ñ´Ñ´ º Ñ Ñ× -ÑA A A 			                 (4)

(3) can be written as

( ) 2

t
m
æ ö¶ ÷ç ÷Ñ Ñ × -Ñ +ç ÷ç ÷ç ¶è ø

DA A = J 			                    (5)

We assume Coulomb gauge, 0Ñ× ºA , for vector potential to 
simplify (5) as

( )2

t t
m m e
æ ö¶ ¶÷ç ÷Ñ = - + = -ç ÷ç ÷ç ¶ ¶è ø

DA J E ,		                (6)

where e  is the electric permittivity. The second equation is written 
since there is no free electric current density in space. We also 
eliminated electric displacement in favor of electric field, E We can 
write electric field in its general form as

V
t

æ ö¶ ÷ç ÷= - Ñ +ç ÷ç ÷ç ¶è ø

AE 				                     (7)

Where V is the electric potential. Considering sinusoidal steady 
state, we can write (7) as

( )V jw= - Ñ +E A 				                    (8)

Combining (8) and (6) we have

( ) ( )2 2

2 2
r rV j j V

tc c

e e
w w w

¶
Ñ = Ñ + = Ñ -

¶
A A A                        (9)

According to Gauss’s law, when there is no free electric charge in 
space, 0r = , electric field satisfies

( ) 0e e eÑ× = Ñ × + Ñ× =E E E 			                   (10)

Replacing E with its value from (8) and using Coulomb gauge we 
obtain

( ) ( ) ( ) 2 0V j V j V j Ve w e w e w eÑ × Ñ + + Ñ× Ñ + = Ñ × Ñ + + Ñ =A A A   (11)

We can write (11) in a different form as

( ) ( ) ( )ln2 r
r

r

V V j V j
e

w e w
e
Ñ

Ñ = - × Ñ + = -Ñ × Ñ +A A          (12)

An example of a slab PC that we want to calculate its modes is shown 
in Figure 1. As can be seen, permittivity of space and its logarithm can 
be written as Fourier series with coefficients depend on z component,
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Here ( )1 2
1 2

, i
G mg ng g i ,= + =


  

 are primitive reciprocal lattice 
vectors of a two-dimensional crystal with the same permittivity pattern, 

where m, n are integers and ( )
Gr

ze


 and ( )s z  are defined as
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According to Bloch theorem, magnetic vector potential and electric 
potential in this problem are of the form

( ) ( )
( ) ( )

xy xy

xy xy

j r jG r

G
G

j r jG r
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r e z e

V r e V z e
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		                 (15)

where k


 is the Bloch wave vector that is supposed to be in the plane 
of slab, i.e. 0

z
k =
 . Replacing ( )r

A , ( )V r
 , and ( )r

re
  in (9) with 

their values from (15) and (13) and assuming, =1c , according to the 
conventional normalized angular frequency scheme, we obtain

( ) ( ) ( ) ( ) ( ) ( )( ) ( )2 2xy xy

G G G G

j G r j G r

xy r xyG
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z e z G V z z e
k ke w k w
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 

  


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

A A   (16)

for the in-plane, xy , component of vector potential. We can change 
(16) from differential to integral form, by using Laplace operator 
Green’s function [20],

( ) 1

4
G r,r

r rp
-¢ =

¢-
 

 

           			                   (17)
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Figure 1: Slab PC which its modes is calculated in this section. This crystal 
is formed by carving air cylinders inside a Silicon substrate with diameters 
equal 0 .7 lattice constant. Slab thickness is 0 6. a .
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With the help of identity [21]
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			               (19)

(18) simplifies to
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Again because of orthogonality of jG re- ×




 for all G


 in reciprocal 
lattice, we can further simplify (20) as
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If we go the same process for the z  component of (9) we obtain
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where ( ) ( )G G
V z V z z¢ ¢
¢ ¢ ¢ ¢= ¶ ¶  . The last equation we need to be able to 

solve our slab PC problem is obtained by replacing ( )r
A , ( )V r

  , and 
( )( )ln

r
re
  in (12) with their values from (15) and (13). Again by using 

Laplace operator Green’s function and doing some simplification we 
reach
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We now take dot product of both sides of (21) by the unit vector 

( )G Gk k
^

+ +
 

   to obtain
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where ( )Gk
^

+


  is perpendicular to ( )Gk +


  but with the same 

magnitude. ( )
G||

A z


 and ( )
G

A z^ 

 are projections of ( )
Gxy

z


A  onto the 

direction of wave propagation, ( )Gk +


 , and direction of perpendicular 
to wave propagation and slab normal respectively. We can write (24) 
in matrix form
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where elements of matrices 1é ùê úë û , 2é ùê úë û , and 3é ùê úë û  are integral operators 
as follows,
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  (26)

We can now take dot product of both sides of (21) by the unit 

vector ( )G Gk k+ +
 

   to obtain
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 (27)

where elements of matrices 1é ùê úë û , 2é ùê úë û , and 3é ùê úë û  are integral operators
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We can also write (23) in matrix form
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where elements of matrices 1é ùê úë û , 2é ùê úë û , 3é ùê úë û , and 4é ùê úë û  are integral 
operators
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If we can expand even and odd functions of z  component in 
our equations respectively by cosine or sine series within a distance 
around the slab, then we can easily write a linear equation which relates 
derivative of a function by itself. For instance we can write

( ) ( )G G
V z N V zé ù¢ = ê úë û
  				               (31)

where Né ùê úë û  is a block diagonal matrix like

0 0

0 0

0 0

F

F
N

F

æ öé ù ÷çê úë û ÷ç ÷ç ÷é ùç ÷ç ê ú ÷ë ûé ù ç= ÷ê ú ç ÷ë û é ù ÷ç ÷ê úç ë û ÷ç ÷ç ÷÷çè ø







   

				               (32)
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where Fé ùê úë û
 equals

2
0 0 0

2
0 0 2 0

2
0 0 0 3

l

lF

l

p

p

p

æ ö- ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç - ÷ç ÷´ ÷ç ÷ç ÷é ù ç= ÷çê ú ÷ë û -ç ÷ç ÷´ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷çè ø







    

                            (33)

and l is the distance around the slab which we have written the cosine 
and sine series in it. Combining (29) and (31) we can write ( )G

V z  as 
a function of ( )G

zA  ,

( ) ( ) ( ) ( )( )1
3 4 2

G G G|| zG
V z J A z A z j A zw

¢ ¢ ¢

-

^
é ù é ù é ù é ù¢ ¢ ¢= + +ê ú ê ú ê ú ê úë û ë û ë û ë û  

  

   (34)

Where ( )1 2I Né ù é ù é ù é ù é ù= + -ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û   . Replacing ( )G
V z in (25) and 

(27) by its value from (34) we obtain

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

2

2

1 2 3

1 2 3

G G G G

G G G G

|| z

|| || z

A z A z A z j A z ,

A z A z A z j A z

w

w

^ ^

^

é ù é ù é ù¢ ¢ ¢= + -ê ú ê ú ê úë û ë û ë û
é ù é ù é ù¢ ¢ ¢= + -ê ú ê ú ê úë û ë û ë û

  

  

   

   

  (35)

where
1

1

1

1

1

1 1 3 3

2 2 3 4

3 3 2

1 1 3 3

2 2 3 4

-

-

-

-

-

é ù é ù é ù é ù é ù= -ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û
é ù é ù é ù é ù é ù= -ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û
é ù é ù é ù é ù=ê ú ê ú ê ú ê úë û ë û ë û ë û
é ù é ù é ù é ù é ù= -ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û
é ù é ù é ù é ù= -ê ú ê ú ê ú ê úë û ë û ë û ë û

    

    

   

    

    
1

3 3 2
-

é ùê úë û
é ù é ù é ù é ù=ê ú ê ú ê ú ê úë û ë û ë û ë û   

			                (36)

Again we use Coulomb gauge to eliminate one of ( )G
zA  

components in favor of the others. According to this gauge we have

( ) ( ) ( ) ( )

( ) ( ) 0

xy xy

G

xy

G

j G r j G r

xy xyG
G G

j G r

z
G

z e z e

A z e

k k

k

- + × - + ×

- + ×

æ ö æ ö÷ ÷ç çÑ × = Ñ × ÷ = Ñ × ÷ç ç÷ ÷ç ç÷ ÷ç çè ø è ø
¢+ º

å å

å





 

  



 



 



A A A
  (37)

Therefore we conclude

( ) ( )
G Gz ||

G : A z j G A zk¢" = +
 

 



 			                 (38)

We can write (38) in matrix form as

( ) ( )
G Gz ||

Q A z j R A zé ù é ù=ê ú ê úë û ë û                                                                      (39)

provided that ( )
Gz

A z


 can be approximated by cosine or sine series. 
Combining (35) and (39) we finally obtain the eigenvalue equation for 
the components of magnetic vector potential as

( )
( )

( )
( )

2
1

1
G G

G G

U

A z A z

A z A z
w^ ^

é ùê úë û

æ ö æ öæ öé ù é ù÷ ÷ç ç÷÷ ÷çê ú ê úç çë û ë û ÷÷ ÷çç ç= ÷÷ ÷çç ç÷÷ ÷é ù é ùçç ç÷÷ ÷ç ê ú ê úè ø÷ ÷ç çë û ë ûè ø è ø

 
 

 

 

 



			               (40)

where
1 1

2 3 2 3,
- -é ù é ù é ù é ù é ù é ù é ù é ù é ù é ù= + = +ê ú ê ú ê ú ê ú ê ú ê ú ê ú ê ú ê ú ê úë û ë û ë û ë û ë û ë û ë û ë û ë û ë û            (41)

We can calculate the normalized angular frequency w  as a function 
of Bloch wave vector, k



, using the equation

( )
( ){ }Eigenvalue

1

U
w k

k
=

é ù
ê úë û



 			                (42)

Using (42) we have calculated TE-like band structure of the slab 
PC shown in Figure 1 with 0 6t . a= . This band structure is shown in 
Figure 2 with Blue dots. For comparison result of FDTD method is also 
plotted with red circles.

Performance Comparison
As mentioned in the above, the main advantage of our method over 

the common one is that its results converge faster as the size of the final 
matrix increase and this matrix is also prepared much more efficiently. 
Counter intuitively, calculation of the matrix operators in (40) and setup 
of the eigenvalue problem is much faster compared to the standard 
approach. The reason is as follows. Suppose that one would utilize N 
expansion terms along each direction. Then, the size of final eigenvalue 
problem in both standard and our new method would be identically 3N . 
While the standard PWEM would require 3N  individual calculation 

Figure 2: TE-like band structure of the slab PC shown in Figure.1 with 
0 6t . a= . Blue dots are calculated from (42), red circles are results of FDTD, 

and magenta curves are obtained from three-dimensional standard PWEM.

Figure 3: Comparison of our method with other ones. Frequency of the first 

mode of slab PC of previous section at ( )M 1  in reciprocal lattice against the 
time it took to calculate it. Red line and circles are related to FDTD, blue 
line and dots are results of our method, and common method is shown with 
magenta line and squares.
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subroutines to setup the full coefficients matrix, our proposed scheme 
would require only 2N  calculations given for a sub-matrix which apart 
from a scalar multiplication repeats to complete the full-sized matrix 
having the size 3N . Put in other words, while the standard PWEM is 

an algorithm with computational complexity ( )3O N , this proposed

algorithm has a computational complexity 2N . It is exactly for this 
reason that in practice our scheme turns out to be much more efficient 
and stable compared to the standard PWEM. To illustrate this we have 
plotted the first mode frequency of the slab PC of previous section at 
the high-symmetry point ( )M 1  against the time it took to calculate it
using our method, the standard PWEM, and FDTD in Figure 3. As it 
can be seen our method converges to the final result much faster within 
few seconds while for the FDTD and standard PWEM, one would need 
roughly at least half an hour to obtain a trustable result.

Conclusion
In this paper we introduced a new method to find modes of a slab 

PC. In this method which is based on PWE, unlike the standard PWEM 
that change the slab PC structure to obtain a three-dimensional crystal, 
we consider the slab as a two-dimensional crystal but with Fourier 
series coefficients depend on slab normal component. We showed that 
with this method we can calculate slab PCs modes much faster and no 
super-computing is needed for it.
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