
Research Article Open Access

Diwekar and Gebreslassie, Int J Swarm Intel Evol Comput 2016, 5:2
DOI: 10.4172/2090-4908.1000131

Research Article Open Access

International Journal of Swarm
Intelligence and Evolutionary
Computation

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Keywords: Efficient ant colony optimization (EACO), Hamersley
sequence sampling (HSS), Metaheuristics, Oracle penalty method

Introduction
A wide range of optimization problems, which include a large

number of continuous and/or discrete design variables, fall into the
category of linear programming (LP), nonlinear programming (NLP),
integer programming (IP), mixed integer linear programming (MILP),
and mixed integer nonlinear programming (MINLP). Gradient based
methods such as Branch and Bound (BB), Generalized Bender's
Decomposition (GBD), and Outer Approximation (OA), are generally
used for solving IP, MILP, and MINLP problems. However, these
methods have limitations whenever, the optimization problems do not
satisfy convexity conditions, the problems have large combinatorial
explosion, or the search domain is discontinuous [1]. Metaheuristic
optimization strategies such as simulated annealing (SA) [2], genetic
algorithm (GA) [3] and ant colony optimization (ACO) [4] can provide
a viable alternative to the gradient based programming techniques.
Review on metaheuristic algorithms can be viewed at Kahraman et
al. [5]. One of the metaheuristic optimization techniques that attract
researchers in recent years is an ACO algorithm. ACO algorithm was
first introduced by Dorigo [4] and it has been receiving increased
attention because of a series of successful applications in different
disciplines such as routing, scheduling, machine learning, assignment,
and design problems, and different branches of engineering [6-10].
Even though, ACO algorithm was practiced with great success for
combinatorial optimization problems, in recent years, the research
focus has been on extending the combinatorial ACO algorithm to
continuous and mixed variable nonlinear programming problems.
In this work, a new variant of ACO algorithm to solve deterministic
optimization problems is proposed.

An ant colony is a population of simple, independent, asynchronous
agents that cooperate to find a good solution to an optimization
problem. In the case of real ants, the problem is to find good quality of
food in a close vicinity of the nest, while in the case of artificial ants, it
is to find a good solution to a given optimization problem [6]. A single
ant is able to find a solution to its problem, but only cooperation among
many individual ants through stigmergy (indirect communication)
enables them to find good or global optimal solutions. Therefore, the
ACO algorithm is inspired by the ants' foraging behavior. Natural ants
deposit pheromone on the ground in order to mark some favorable
path that should be followed by other members of the colony. ACO

algorithm exploits a similar mechanism for solving optimization
problems [4]. It was originally introduced to solve combinatorial
optimization problems, in which decision variables are characterized
by a finite set of components. However, in recent years, its adaptation
to solve continuous [11-14] and mixed variable [15-17] programming
problems has received an increasing attention.

In this paper, a new strategy that improves the computational
performance of ACO algorithm by increasing the initial solution
archive diversity and the uniformity of the random operations using a
quasi-random sampling technique referred as Hammersley Sequence
Sampling (HSS) [20]. This sampling mechanism has been shown to
exhibit better uniformity property over the multivariate parameter
space than the crude Monte Carlo sampling (MCS) and the variance
reduction techniques such as Latin hypercube sampling (LHS) [14-
17]. The ACO benefits from the multivariate uniformity property of
the HSS. Therefore, the main advantage of the proposed algorithm is
the high computational efficiency attained from the EACO algorithm
compared to the conventional ACO algorithm.

The rest of this article is organized as follows: The Ant colony
optimization algorithms for combinatorial, continuous and mixed
variables are presented in the next section. In Section 3, Oracle penalty
method to solve constrained optimization problems is introduced. The
"Sampling Techniques" are introduced in Section 4. The efficient ant
colony optimization algorithm proposed in this work is presented in
Section 5. Following the benchmark problems presentation in Section
6, results and discussions of the benchmark problems are presented in
Section 7. Finally, the concluding remarks are presented in the Section
8.

*Corresponding author: Urmila M Diwekar, Center for Uncertain Systems: Tools
for Optimization & Management (CUSTOM), Vishwamitra Research Institute,
Crystal Lake, USA, Tel:(630)-886-3047, Email: Urmila@vri-custom.org

Received March 03, 2016; Accepted March 06, 2016; Published March 10, 2016

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization
(EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel Evol Comput 5:
131. doi: 10.4172/2090-4908.1000131

Copyright: © 2016 Diwekar UM, et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Abstract
In this paper, an efficient ant colony optimization (EACO) algorithm is proposed based on efficient sampling method

for solving combinatorial, continuous and mixed-variable optimization problems. In EACO algorithm, Hammersley
Sequence Sampling (HSS) is introduced to initialize the solution archive and to generate multidimensional random
numbers. The capabilities of the proposed algorithm are illustrated through 9 benchmark problems. The results of the
benchmark problems from EACO algorithm and the conventional ACO algorithm are compared. More than 99% of the
results from the EACO show efficiency improvement and the computational efficiency improvement range from 3% to
71%. Thus, this new algorithm can be a useful tool for large-scale and wide range of optimization problems. Moreover,
the performance of the EACO is also tested using the five variants of ant algorithms for combinatorial problems.

Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic
Optimization
Urmila M Diwekar*and Berhane H Gebreslassie
Center for Uncertain Systems: Tools for Optimization & Management (CUSTOM), Vishwamitra Research Institute, Crystal Lake, USA

Internatio
na

l J
ou

rn
al

 o
f S

warm
 Intelligence and Evolutionary Computation

ISSN: 2090-4908

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 2 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Ant Colony Optimization
The ACO is a metaheuristic class of optimization algorithm

inspired by the foraging behavior of real ants [6]. Natural ants randomly
search food by exploring the area around their nest. If an ant locates a
food source, while returning back to the nest, it lay down a chemical
pheromone trail that marks its path. This pheromone trail will indirectly
communicate with other members of the ant colony to follow the
path. Over time, the pheromone will start to evaporate and therefore
reduce the attraction of the path. The routes that are used frequently
will have higher concentration of the pheromone trial and remain
attractive. Thus, the shorter the route between the nest and food source
imply short cycle time for the ants and these routes will have higher
concentration of pheromone than the longer routes. Consequently,
more ants are attracted by the shorter paths in the future. Finally, the
shortest path will be discovered by the ant colony [6,8].

In ACO algorithms, artificial ants are stochastic candidate solution
construction procedures that exploit a pheromone model and possibly
available heuristic information of the mathematical model. The artificial
pheromone trails (numeric values) are the sole means of communication
among the artificial ants. Pheromone decay, a mechanism analogous to
the evaporation of the pheromone trial of the real ant colony allows
the artificial ants to forget the past history and focus on new promising
search directions. Like the natural ants, by updating the pheromone
values according to the information learned in the preceding iteration,
the algorithmic procedure leads to very good and hopefully, a global
optimal solution.

ACO for Discrete optimization problems

In a discrete optimization problem (shown in Eqn.1), the search
domain of the problem is partitioned into a finite set of components,
and the discrete optimization algorithm attempts to find the optimal
combination or permutation of a finite set of elements from large and
finite set of the search domain [17].

Yy
yg
yhts

yf
x

∈
≤
=

0)(
0)(..

)(min 							
		 (1)

The combinatorial search space Y is given as a set of discrete
variables yi where i = 1, ..., NDIM, with possible set of options

{ }iNOP
i

2
i

1
i ,...,, vvvNOPv i

j
i =∈ . If a solution vector Yy∈ takes a value for

each decision variable that satisfies all the constraints, it is a feasible
solution of the discrete optimization problem. A solution Yy ∈∗ is
called a global optimal if and only if; Yyyfyf ∈∀≤∗),()(. Therefore,
solving a discrete optimization problem involves finding at least one

Yy ∈∗ .

To solve a discrete optimization problem, artificial ants construct a
solution by moving from one solution state to another in a sequential
manner. Real ants walk to locate the shortest path by choosing a
direction based on local pheromone concentrations and a stochastic
decision policy. Likewise, the artificial ants construct solutions by
moving through each decision variable guided by the value of the
artificial pheromone trial and by making stochastic decisions at each
state.

The important differences between the real and artificial ants are

•	 Artificial ants move sequentially through a finite set of decision
variable set of options. Real ants move in a direction of the food
by selecting from different passible paths, which are not finite.

•	 Real ants deposit and react to the concentration of the
pheromone while walking. However, in artificial ants,
sometimes the pheromone update is done only by some of the
artificial ants, and often the pheromone updated is only after a
complete solution is constructed.

•	 Artificial ants can introduce additional mechanisms to improve
the solution such as adding local search strategies that does not
exist in real ants.

The decision policy in choosing the solution component considers
a trade-off between the pheromone intensity on a particular edge and
the desirability of that edge with respect to the edge contribution on
the objective function [4]. Taking these two properties of an edge into
account, ACO algorithms effectively utilize the pheromone intensity
which is based on the information learnt from the prior solution
construction and the edge desirability. The decision policy is given by
the transition probability function as shown in Eqn. 2.

(it)ij ijprob (it)ij (it)ij ijil

βατ η
=

βατ η∑					 (2)

where probij(it) is the probability of choosing edge ij as a solution
component when an ant is at node i at iteration it, ij (it) τ is the
pheromone value associated with edge ij at iteration it, ij (it) η is the
desirability of edge ij. α and β are parameters that control the relative
importance of pheromone intensity and desirability, respectively. If
α >> β, the algorithm will make decisions based on mainly on the
learned information, represented by the pheromone, and ifα << β, the
algorithm will act as a greedy heuristic selecting mainly the cheapest
edges, disregarding the learned information [6].

Evaluation of the pheromone value ij (it) τ at the end of each of the
iteration is the core of ACO algorithm. After each ant has constructed
a solution (i.e., at each iteration) the pheromone value on each edge
is updated. The goal of the pheromone update is to increase the
pheromone values associated with good or promising solutions, and
to decrease those that are associated with bad ones. The pheromone
updating rule consists of two operations:

•	 The pheromone evaporation operation that reduces the current
level of pheromone

•	 The pheromone additive operation: depends on the quality of
the solutions generated at the iteration, pheromone is added to
the edge of good solutions. The updating rule is given as follows
[6] as shown in Eqn. 3.

ij ij ij(it 1) (it) (it)τ + = ρτ + ∆τ (3)

Where ρ is the pheromone evaporation factor representing
the pheromone decay (0 ≤ ρ ≤1) and ij (it)∆τ is the pheromone
addition for edge ij. The decay of the pheromone levels enables the
colony to 'forget' poor edges and increases the probability of good
edges being selected (i.e. the assumption behind this is that as the
process continues in time, the algorithm learns to add pheromone only
to good edges, implying that more recent information is better than
older information). For 1→ρ , only small amounts of pheromone are
decayed between iterations and the convergence rate is slower. This
is characterized by the high probability of finding the global optimal
solution at the expense computational efficiency. Whereas for 0→ρ
more pheromone is decayed resulting in a faster convergence. This
trend leads to getting stuck at the local optimal solutions.

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 3 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

The pheromone addition operation is increasing the pheromone
values associated with good or promising solutions and it is the
main feature that dictates how an ACO algorithm utilizes its learned
information. Typically, pheromone is only added to edges that have
been selected, and the amount of pheromone added is proportional to
the quality of the solution. In this way, solutions of higher quality receive
higher amounts of pheromone [17]. The pheromone concentration
added at iteration it is determined from Eqn. 4.

nAnts
k

ij ij
k

(it) (it)∆τ = ∆τ∑ 	 (4)

Where the pheromone concentration associated with ant k as function
of the quality of the objective function is determined as shown below.

()()
 ∈∆ = 


ij

if ij edgevisited by ant k
f yit

Otherwise					 (5)

ACO algorithm to solve discrete optimization problems has five
most popular variants which are the ant system (AS) [4], elitist ant
system (EAS) [4], rank based ant system (RAS), ant colony system
(ACS) and the Max-Min ant system (MMAS). For details of the ant
algorithm variants, the book by Dorigo and Stutzle [6] can be viewed.
These variants are derived from the AS algorithm and they follow
similar solution construction procedure and pheromone evaporation
procedure. The main differences among these variants are the way the
pheromone update and pheromone trial management are performed.

ACO for Continuous domain optimization problem

Continuous variable optimization problems could be tackled
with a discrete optimization algorithm only if the continuous ranges
of the decision variables are discretized into finite sets [17]. The
continuous ACO algorithm stores a set of K solutions in a solution
archive which represents as the pheromone model of the combinatorial
ACO algorithm. This solution archive is used to generate a probability
distribution of the promising solutions over the search space. In this
algorithm, the solution archive is first initialized and the algorithm
iteratively finds the optimal solution by generating new solutions of
size equal to the number of ants (nAnts). The new nAnts size solutions
are then added to the K size solutions from the previous iteration. To
propagate the updated K size solutions to the next iteration, the K +
nAnts solutions are first sorted according to the quality of the objective
function of each solution. Then, the solution archive is updated by
keeping the best K solutions of the combined solutions and removing
the worst nAnts size solutions. The details of the algorithm formulation
can be found in Socha [17], but for the completion of this work the
main features of the formulation are presented below.

Similar to the combinatorial ACO algorithm the solution
construction of ants is accomplished in an incremental manner, i.e
variable by variable. First, an ant chooses probabilistically one of the
solutions in the solution archive as a solution construction guide. The
probability of choosing solution j as guide is given by Eqn. 6:

∑
=

=

K

r
r

j
jprob

1
ω

ω
 (6)

where jω is the weight associated with solution j. The weight is
determined using the Gaussian function [17] as follows:

2

2
(j 1)

2(qK)
j

1 e
qK 2

− −

ω =
π

 (7)

where, j is rank of the solution in the archive, q is an algorithmic
parameter and K is the size of the solution archive. The mean of the

Gaussian function is 1, so that the best solution has highest weight
[17]. The ant treats each problem variable i = 1, . . . NDIM separately.
It takes value i

jx of variable i of the jth solution guide and samples its
neighborhood.

The algorithm for continuous domain is designed with the aim of
obtaining multimodal one dimensional density function (PDF) from
a set of probability density functions. Each PDF is obtained from the
search experience and it is used to incrementally build a solution

nx ℜ∈ . Where, x is a vector of the continuous decision variables. To
approximate a multimodal PDF [14] proposed a Gaussian kernel which
is defined as a weighted sum of several one dimensional Gaussian
functions gji(x) as shown in Eqn. 8.

∑∑
=

−−

=
==

K

j

ji

jix

ji
j

K

j
jiji exgxG

1

22

2)(

1 2
1)()(σ

µ

πσ
ωω			 		 (8)

where { }Ki ,...,2,1∈

 and { }Kj ,...,2,1∈

identify the optimization

problem dimensionality and ranking of the solution in the archive. jω
is vector of weights associated with the individual Gaussian function.

ijµ is the vector of means of the individual solution components. ijσ is
vector of the standard deviations. All these vectors have cardinality K.

Each row of the solution archive maintains the solution components
n

jx ℜ∈

where xj is vector of solution of row j of the solution archive

),...,,(21 jnjjj xxxx = , the objective function f(xj) and the weight
associated with the solution (ωi). The objective function values and the
corresponding weight are stored in such a way that f(x1) < f(x2), . . .
, < f(xj), . . . , < f(xK) and ω1 > ω2, . . . , > j , . . . , > ωK . The solutions
in the achieve T are, therefore, used to dynamically generate the PDFs
involved in the Gaussian kernels. More specifically, in order to obtain
the Gaussian kernel Gi , the three parameters (iω , iµ , and iσ) has
to be determined. Thus, for each Gi , the values of the ith variable of
the K solutions in the archive will be elements of vector µi, that is,

KijiiiKijiiii xxxx ...,,...,,...,,...,, 2121 == µµµµµ . O n
the other hand, each component of the standard deviation vector

Kijiiii σσσσσ ...,,...,, 21=

is determined as shown in Eqn. 9.

∑
−
−

=
=

K

z

jizi

ji K
xx

1 1
ξσ

 (9)

where { }Kj ,...,2,1∈ , ξ > 0 is a parameter that has similar effect to
that of the pheromone evaporation parameter in combinatorial ACO
algorithm. The higher the value of ξ leads to the lower convergence
speed of the algorithm.

The solution archive update is performed following the three steps
below.

•	 The newly generated solutions of size equal to the number of
ants (nAnts) are added to the old solution archive.

•	 The combined solutions are sorted according to the quality of
the objective functions.

•	 The first K best solutions are stored and the worst nAnts size
solutions are removed.

ACO for Mixed-integer nonlinear programming problem

For optimization problem that includes continuous and discrete
variables, the ACO algorithm uses a continuous-relaxation approach
for ordering variables and similar to the combinatorial approach for
categorical variables [17].

Ordering discrete variables: the algorithm works with indexes. In

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 4 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

similar fashion to that of the algorithm for continuous variables, the
ACO algorithm generates values of the indexes for a new solution as
real numbers. However, before the objective function is evaluated, a
heuristic rule is applied for the continuous values that represent the
discrete variables by round off the continuous values to the closest
index, and the value at the new index is then used to evaluate the
objective function.

Categorical discrete variables: in conventional ACO algorithm
for combinatorial problems, solutions are constructed by choosing the
solution component values from the finite search domain following the
transition probability test that depend on the static pheromone value.
However, because the solution archive replaces the pheromone model
of the ACO algorithm, the transition probabilistic rule is modified to
handle the solution archive.

Similar to the case of continuous variables, each ant constructs the
discrete part of the solution incrementally. For each i = 1, NT discrete
variables, each ant chooses probabilistically one solution component
sci from the finite set of solution component options available

{ }iNOP
i

2
i

1
i ,...,, vvvNOPv i

j
i =∈ . The probability of choosing the jth

value is given by Eqn. 10.

∑
=

=

SC

r
r

jj

iprob
1
ω

ω 		 (10)

where ωj is the weight associated with the jth available option. It is
calculated based on the weights (ω) and some additional parameters
as shown below:

η
ω

ω q
u r

i

jr

j +=
 (11)

where the weight ωjr is calculated according to Eqn. 7, jr is the index of
the highest quality solution in the solution archive that uses value j

iv
for the ith variable. r

iu is the number of solutions in the archive that use
value j

iv for the ith variable. Therefore, the more popular value j
iv in the

archive, the lower is its final weight. The second component is a fixed
value (i.e., it does not depend on the value j

iv selected): η is the number
of values of j

iv from the sci available that are unused by the solutions
in the archive, and q is the same algorithm parameter that was used in
Eqn. 7. Some of the available categorical values j

iv may be unused for
a given ith decision variable in all the solutions of the archive. Hence,
their initial weight is zero. The second component is added in order to
enhance exploration and prevent premature convergence.

Oracle Penalty Method
The problem given in Eqn. 1 is a constrained optimization problem,

which can be solved using a penalty method. To solve such problem,
first the problem is transformed into unconstrained optimization
problem by transforming the original objective function into a penalty
function. In most cases, the penalty function is given as a weighted sum
of the original objective function and the constraint violations [15,22].
In such a way, the penalty function serves as an objective function.
The main advantage of the penalty method is its simplicity. However,
the simple penalty methods often perform very poorly on challenging
constrained optimization problems, while the more advanced methods
need additional parameters thus require an additional tuning of these
parameters. An oracle penalty method proposed by Kalagnanam [23] is
a simple to implement and general method capable of handling simple
and challenging constrained optimization problems. In oracle penalty
method, the objective function is first transformed into additional

equality constraint h0(x) = f(x) - Ω; where Ω is a parameter called
oracle. The objective function becomes redundant in the transformed
problem definition. Therefore, it is a constant zero function)(~ xf and
the transformed optimization problem is presented as shown below:

()
()
()

n

x

x
xg
xh

xfxhts

xf

ℜ∈

≤
=

Ω−=

0
0

)(..

)(~min

0					 (12)

By transforming the objective function into an equality constraint,
then minimizing the new constraint h0(x) and the residual of the
original constraints h(x) and g(x) becomes directly comparable. The
penalty function balances its penalty weight between the transformed
objective function and the violation of the original constraints.
The implementation of the oracle penalty function can be found in
Appendix A.

Sampling Techniques
Sampling is a statistical procedure that involves selecting a finite

number of observations, states, or individuals from a population
of interest. A sample is assumed to be representative of the whole
population to which it belongs. Instead of evaluating all the members of
the population, which would be time consuming and costly, sampling
techniques are used to infer some knowledge about the population.
Sampling techniques are used in a wide range of science and engineering
applications. The most commonly used sampling technique is a
probabilistic sampling technique which is based on a pseudo-random
number generator called Monte Carlo Sampling (MCS). This sampling
technique has probabilistic error bounds and large sample sizes are
needed to achieve the desired accuracy. Variance reduction techniques
have been applied to circumvent the disadvantages of Monte Carlo
sampling [18,19,24].

Monte Carlo Sampling

One of the simplest and most widely used methods for sampling
is the Monte Carlo sampling. Monte Carlo method is a numerical
method that provides approximate solution to a variety of physical and
mathematical problems by random sampling. In crude Monte Carlo
approach, a value is drawn at random from the probability distribution
for each input, and the corresponding output value is computed. The
entire process is repeated n times producing n corresponding output
values. These output values constitute a random sample from the
probability distribution over the output induced by the probability
distributions over the inputs. One advantage of this approach is that the
precision of the output distribution may be estimated using standard
statistical techniques. On average, the error ϵ of approximation is of the
order O(N1/2). One important feature of this sampling technique is that
the error bound is not dependent on the dimension. However, this error
bound is probabilistic, which means that there is never any guarantee
that the expected accuracy will be achieved. The pseudorandom number
generator produces samples that may be clustered in certain regions
of the population and does not produce uniform samples. Therefore,
in order to reach high accuracy, larger sample sizes are needed, which
adversely affects the computational efficiency [18,19].

Hammersley Sequence Sampling

To improve the efficiency of Monte Carlo simulations and overcome
the disadvantages, eg, probabilistic error bounds, variance reduction

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 5 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

techniques were proposed. The sampling approaches for variance
reduction that are used more frequently in the chemical engineering
applications are importance sampling, Latin Hypercube Sampling
(LHS), Descriptive Sampling, and HSS. The HSS belongs to the group
of quasi-Monte Carlo methods [19].

LHS is one form of stratified sampling that can yield more precise
estimates of the distribution function, and therefore reduce the number
of samples required to improve computational efficiency. This sampling
method was used in ACO algorithm to initialize the solution archive
for continuous variable optimization problem [25]. LHS was designed
to improve the uniformity properties of Monte Carlo methods. It was
shown that the error of approximating a distribution by finite sample
depends on the equi-distribution properties of the sample used, but
the relationship between successive points in a sample, the randomness
or the independence is not critical [18,19]. The main drawback of this
stratification scheme is that it is uniform in one dimension (1D) but it
does not provide the uniformity property in k dimensions.

HSS is an efficient sampling technique developed by Diwekar
research group [18,19,24]. It is based on quasi-random number
generator. HSS uses Hammersley points to uniformly sample a unit
hypercube and inverts these points over the joint cumulative probability
distribution to provide a sample set for the variables of interest. HSS
technique uses an optimal design scheme for placing n points on a
k-dimensional hypercube. This scheme ensures that the sample is
more representative of the population showing uniformity properties
in multi-dimensions [18,19,24]. A qualitative picture of the uniformity
properties of the MCS and HSS techniques on a unit square is presented
in Figure 1. In the figure, it is clearly shown that samples generated by
the HSS technique achieve better uniformity in the parameter space
and hence results better computational efficiency.			
	

Efficient Ant Colony Optimization (EACO) Algorithm
The proposed EACO algorithm improves the conventional

ACO algorithm for combinatorial, continuous and mixed variable
optimization problems by introducing the HSS technique. The
initial solution archive diversity for continuous and mixed-variable
optimization problems plays an important role in the performance
of ACO algorithm. The uniformity property of the HSS technique is
used in this step to avoid initial solution archive clustered in a small
region of the potential solution space. Moreover, ACO algorithm
is a probabilistic method, several random probability functions are
involved in the algorithm procedure. Examples: in combinatorial
ACO algorithm, the transition probability that help to choose the
next solution component and for continuous and mixed-variable
optimization problems, the probability of choosing ant guide from the
solution archive. The distribution of the random numbers generated
for the acceptance probability of a solution component and ant guide
affects the performance of the ACO algorithm. At this stage, the
multidimensional uniformity property of HSS is exploited to choose
these random numbers.

The EACO algorithm uses as termination criteria maximum
number of solution construction steps (MaxIter), and the tolerance
(ϵ) that is the relative difference between solutions found in two
consecutive iterations is less than or equal to a parameter ϵ for a set of
consecutive number of iterations, ICON. The EACO algorithm is given
in Table 1 and Figure 2.

T is solution archive and K is size of T. nAnts is the number of
ants. NC, NO, NT and NDIM are the number of continuous, ordinal,
categorical and the total number of decision variables, respectively.
NOPT is the number of options in categorical variables.

The best features of the EACO algorithm are

•	 The ability to exploit the multi-dimensional uniformity
property of the Hammersley sequence sampling (HSS)

•	 The high computational efficiency over the conventional ACO
algorithm

•	 The ability to solve combinatorial, continuous and mixed-
integer optimization problems

•	 The ability to solve large scale convex and nonconvex
optimization problems

Benchmark problems
The main goal of the benchmark problems is to establish the

performance comparison between the proposed EACO algorithm and
the conventional ACO algorithm. For combinatorial, continuous and
mixed-variable optimization problems, 2, 3 and 4 benchmark problems,
respectively, are used for the experimentation. In all of the benchmark
problems, we did the experiments for 5, 10, 15, and 20 dimensional
variables. 10 experiments for each combination of the benchmark and the
dimensions were performed. Moreover, for the combinatorial ant algorithm,

(a) MCS

(b) HSS
Figure 1: 100 sample points on a unit square using crude MCS (a) and the
HSS technique (b).

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 6 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Figure 2: EACO algorithm for continuous, combinatorial and mixed variable
problems.

Start program
•	 Set K, nAnts, NC, NO, NT, NOPT, , q, ξ and termination criteria
•	 Initialize solution archive T(K, NC + NO) using HSS
•	 Initialize solution archive T(K, NT) randomly from the possible options
•	 Combine and evaluate the objective function of the K solutions T(K, NDIM)
•	 Rank solutions based on the quality of the objective function (T = rank(S1

…SK))
•	 For categorical optimization problems, introduce multidimensional random

number generated with HSS (IterMax × nAnts × NT, NOPT)
While Termination criterion is not satisfied
•	 Generate solutions equivalent to the number of ants (nAnts)

For all # nAnts
•	 Incremental solution construction

For all # NDIM
{{ Probabilistically construct continuous decision variables
{{ Probabilistically construct ordinal decision variables
{{ Probabilistically construct categorical decision variables

End for # NDIM
•	 Store and evaluate the objective function of the newly generated solutions

End for # nAnts
•	 Combine, rank and select the best K solutions, T = Best(rank(S1 ... SK ... SK+

nAnts), K)
•	 Update solution

End while
End program

Table 1: EACO Algorithm for continuous, combinatorial and mixed variable
problem.

Function Formula Range
Combinatorial Optimization Problems
1 Travelling Salesman Problem

2 EX. II

1y
2 i 2 i 2

BC 1 2 3
i 1

f (y) (y 3) (y 3) (y 3)
=

= − + − + −∑
 [1,5]NC

Continuous Combinatorial Optimization Problems

3 Parabolic (PRCV)

NC
2

PR i
i-1

f (x) x =∑
 [-3,3] NC

4 Ellipsoid (ELCV)

i-1NC
2n-1

EL i
i 1

f (x) 5 x
=

=∑
 [-3,3] NC

5 Cigar (CGCV)

NC
2 4 2

CG 1 i
i 2

f (x) x 10 x
=

= + ∑
 [-3,3] NC

Mixed-variable Combinatorial Optimization Problems

6 Parabolic (PRMV)

NC ND
2 2

PR i i
i 1 i 1

f (x, y) x y
= =

= +∑ ∑
 [-3,3] NM

7 Ellipsoid (ELMV)

i-1 i-1NC ND
2 2n-1 n-1

EL i i
i 1 i 1

f (x, y) 5 x 5 y
= =

= +∑ ∑
 [-3,3] NM

8 Cigar (CGMV)

NC ND
2 4 2 2 4 2

CG 1 i 1 i
i 2 i 2

f (x, y) x 10 x y 10 y
= =

= + + +∑ ∑
 [-3,3] NM

9 EX. III
()

i

NDNC ND
2 2

i i
i 1 i 1 i 1

f (x, y) x i / NC y cos(4 y)
= = =

= − + + π∑ ∑ ∏
 [-3,3] NM

Table 2: Benchmarks problems.

there are five most popular algorithm variants [6]. The performance of each
variant is tested using the EACO algorithm. The performance measure
used to evaluate the algorithms was based on the number of iterations that
the algorithm needed to reach the global optimal of the test functions for
the same algorithmic parameter setting and terminating criterion. The
benchmark problems are explained below and are given in Table 2.

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 7 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

•	 Traveling Salesman Problem (TSP): Given the number of cities
to be visited and the distances between each pair of cities, find
the shortest possible route that lead to visiting each city exactly
once and returns back to the origin city. The TSP is an NP-hard
combinatorial optimization problem.

•	 A TSP with known global optimal solution is also retrieved
from the TSPLIB benchmark library accessible at http://www.
iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/.
For each variant of the combinatorial ACO optimization
algorithm, a 16 Odyssey geographical locations (ulysses16.tsp)
with global optimal solution of 6859 is used to perform the
computational efficiency comparison between the EACO and
the conventional ACO algorithm.

•	 A pure combinatorial problem, example II of Kim and Diwekar
[26]. This problem has one global minimum 0 when all y1; y2i;
and y3i are equal to 3.

•	 Three test functions are used for the continuous optimization
problems. The parabolic function is from Kim and Diwekar
example I [26]. This function is a multidimensional parabolic
function that has one global optimum at 0 for all decision
variables equal to 0. The second and third test functions, which
are the ellipsoid and cigar functions, are from Socha [17].

•	 The three test functions used for the continuous optimization
problem are further modified to represent mixed variable
optimization problems as shown in Table 2.

•	 Example III from Kim and Diwekar [26] which is an MINLP
problem that has one global minimum -1 is further used as an
MINLP benchmark problem.

•	 Case studies on real world optimization problems solved by the
proposed EACO algorithm can be viewed in references [28,29].

Results and Discussions
Benchmark Problems

This section presents a comparative study between the EACO
and the conventional ACO algorithm that use MCS for initializing
the solution archive and generating the multidimensional random
number to optimize the 9 benchmark problems presented in Table 2.
The proposed EACO algorithm effectively solves discrete, continuous,
and mixed-integer optimization problem benchmarks. The algorithm
terminates when it reaches maximum number of solution construction
steps, MaxIter, or if the tolerance (ϵ) that is the relative difference
between solutions found in two consecutive iterations is less than or
equal to a parameter ϵ for a set of consecutive number of iterations,
ICON.

In order to make unbiased comparison between the EACO and the
conventional ACO algorithms, we use the same parameters to conduct
the experiments. The results are based on 10 independent runs on
each benchmark problem. Each run differs in the seed to generate the
random numbers and the solution archive initialization. The parameters
used to tackle the problems are selected after performing a number of
experimentations using different combination of the parameters. The
experiments to get the parameter settings are performed using the
conventional ACO algorithm. The summary of the parameters that we
use for the algorithms are presented in Table 3. As shown in Table 3, the
parameter setting differs from problem to problem. The archive size K
and the number of ants nAnts for 5 dimensional variables are 50 and 2,

respectively.

 x and y are vector of continuous and discrete variables, respectively.
NC, ND, and NM are number of continuous, discrete and mixed
variable, respectively.

EX. II and III refers to examples from Diwekar [26].

Combinatorial EACO algorithms: The results of the discrete
benchmark problems are presented in Tables 4-5. As shown in the
tables, for each of the 40 (3×10 + 10) pair of the experimental runs
of the benchmark problems, the EACO algorithm shows a better
computational efficiency than the conventional ACO algorithm. The
iteration improvement ranges from 24.2% of the multistage turbine
problem of example II from Kim and Diwekar [26] to 33% of the
travelling salesman problem with 10 and 20 numbers of cities to be
visited. For the discrete optimization problems, by keeping the diversity
of the multidimensional random numbers, the EACO algorithm
produces more uniform operation to guide ants in making decisions of
accepting or rejecting the current transition probability that lead to the
finding of a new solution component. The results in Table 4 and 5 show
that the EACO benefits from the uniformity property and diversified
multidimensional random number generations.

Comparison of variants of the combinatorial EACO algorithms: To
compare the performance of the EACO algorithm with the variants of
the combinatorial ACO algorithms, the following algorithm parameter
settings are used. Maximum number of tour construction steps
(MaxIter) of 1000 and absolute error between the global optimal and
the best so-far solution ϵ = 1E-6 are used as stopping criteria. Moreover,
the parameter settings dependent on the algorithm variant are given as
follows. AS: α = 1; β = 3; ρ = 0.5, and nAnts = n, that is number of ants
equal to the number of the geometrical locations (n). EAS: α = 1; β =
5; ρ = 0.5, e = n, and nAnts = n. RAS: α = 1; β = 4; ρ = 0.6, w = 10, and
nAnts = n. ACS: α = 1; β = 3; ρ = 0.9, ξ = 0.1, and nAnts = n. MMAS : α
= 1; β = 5; ρ = 0.98, pbst = 0.05; and nAnts = n. The pheromone update
for MMAS is performed using only the iteration-best ant.

The results are based on 25 independent runs of the Ulysses16.
tsp problem using the five ant colony algorithm variants. The same
parameter settings are used for the same ant colony algorithm variant
except the random number generated using the Monte Carlo sampling
(ACO) and the multidimensional quasi-uniform HSS sampling methods
(EACO). As shown in Figure 3, for ant system (AS), rank based ant

NCITY
HSS MCS Improve [%]

Iter Length Iter Length [%] Iter [%] Length
10 6 123 9 123 33 0
20 14 164 21 164 33 0
40 31 209 45 207 31 -1

Table 4: Combinatorial: Travelling Salesman Problem for 10, 20 and 40 cities.

ND Runs Glob. Opt
EACO ACO Improve

Iter Iter [%]

11 10 0 16 22 24.2

Table 5: Combinatorial: Example II of Diwekar [26].

Table 3: Summary of the parameters used for the benchmark problems.

Function α β ρ nAnts K q ε
TSP 1 4 0.5 nCity - - 1E-4
Ex. II [27] - - 0.5 20 150 0.001 1E-6
Other test functions - - 0.5 5 150 0.001 1E-5

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 8 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

system (RAS), and ant colony system (ACS), the EACO form of these
algorithms perform better than the conventional ACO algorithm form of
these variants. That is, the numbers of runs that find the global optimal
solution using the EACO form of AS, RAS and ACCS are higher than that
of the conventional ACO algorithm forms of the same variants. In the
case of elitist ant system, both methods find the global optimal solutions
for the same number of runs (17/25). However, for Max-Min ant system,
the conventional ACO algorithm find global optimal solution in more
runs (23/25) than the EACO algorithm (22/25). This could be attributed
to the fact that the small problem size and already MMAS is an efficient
method of all the ant variants.

Continuous EACO algorithm: The results of the continuous
benchmark problems are presented in Tables 6-8. Among the 120 (3
×4×10) pair of the experimental runs of the benchmark problems,
only in one instant (Table 6 of parabolic function with 5 decision
variables) the two algorithms have same performance. For 99.2% of
the experimental runs of the continuous functions the performance of

the EACO algorithm is better than the conventional ACO algorithm.
Because of the multidimensional uniformity property of HSS, the
EACO algorithm needed less iteration than using the MCS to find the
global optimal solutions. The computational efficiency improvement
ranges from 7% for the parabolic function with 20 decision variables
(Table 6) to 23.5% of the cigar function with 15 decision variables
(Table 8).

MINLP EACO algorithm: The results of the mixed-integer
benchmark problems are presented in Tables 9-12. Among the 160 (4
×4×10) pair of the experimental runs of the benchmark problems, all
of the 160 pair experimental runs show that the performance of the
EACO algorithm is better than the conventional ACO algorithm. The
computational efficiency improvement ranges from 3% for the mixed
variable cigar function with 20 decision variables (see Table 11) to
71% of the same function with 5 decision variables. Moreover, the
tables also show that for the mixed variable optimization problems,
the improvement on the computational efficiency of EACO is more
pronounced.

Convergence Trajectory: Furthermore, the convergence paths
of the EACO and the conventional ACO from each type of the
benchmark problems are presented in Figures 4 - 6. The figures show
the trajectories of the objective function value for combinatorial
(Figure 4), continuous (Figure 5) and mixed variable (Figure 6) of
the benchmark problems as function of the number of iterations to
find the optimal solution. As shown in the figures, EACO algorithm
found the global optimal solutions with 14, 196 and 326 iterations,

Figure 3: Number of runs that find the global optimal solution of the ulysses16.
tsp (6859) for each variant the combinatorial ACO and EACO.

NDIM
EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 15 43 65

10 0 95 117 19
15 0 156 177 12
20 0 188 266 29

Table 10: Mixed variable: Ellipsoid function for 5, 10, 15 and 20 decision variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 26 89 71

10 0 156 189 17
15 0 245 273 10
20 0 337 348 3

Table 11: Mixed variable: Cigar function for 5, 10, 15 and 20 decision variables.

NDIM
EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 77 85 9

10 0 100 108 7
15 0 118 135 13
20 0 166 234 29

Table 9: Mixed variable: Parabolic function for 5, 10, 15 and 20 decision variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 -1 60 65 8

10 -1 112 128 13
15 -1 180 197 9
20 -1 232 268 13

Table 12: Mixed variable: Example III of Diwekar UM for 5, 10, 15 and 20 decision
variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 90 90 0

10 0 151 165 8
15 0 166 187 11
20 0 250 270 7

Table 6: Continuous: Parabolic function for 5, 10, 15 and 20 decision variables.

NDIM
 EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 32 37 14

10 0 169 183 8
15 0 198 233 15
20 0 294 341 14

Table 7: Continuous: Ellipsoid function for 5, 10, 15 and 20 decision variables.

NDIM
EACO ACO Improve

Glob. Opt Iter Iter [%]
5 0 85 105 19

10 0 304 325 6
15 0 326 426 23.5
20 0 493 536 8

Table 8: Continuous: Cigar function for 5, 10, 15 and 20 decision variables.

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 9 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

Figure 4: Travelling salesman problem optimization trajectory.

(a) Cigar function.

(b) Cigar function zoomed
Figure 5: Continuous variable: The iteration range [80 160] of Figure 5a is
zoomed and presented in Figure 5b.

Figure 6: Example III of Kim and Diwekar 2002a.

respectively. While the conventional ACO that uses MCS needs
hogher number of iteration 21, 226, and 426 to reach the same optimal
solutions. All the above observations prove that EACO algorithm
benefits from the uniformity property of the HSS, by producing more
uniform and diverse samples.

Conclusions
The ACO algorithm is a simple to implement yet a powerful and

effective optimization framework for handling discrete, continuous
and mixed-variable optimization problems. In this work, we proposed
EACO as an alternative to the conventional ACO algorithm and the
gradient based algorithms for optimization of large scale problems. ACO
algorithm is probabilistic optimization strategy and the performance of
the algorithm depends on the sampling strategies implemented in the
algorithm. EACO algorithm is developed based on efficient sampling
technique that keeps the diversity and the multidimensional uniformity
property of samples. The capabilities of the proposed method are
illustrated through 9 benchmark problems. The results show that the
computational efficiency of the conventional ACO is improved in
more than 99% of the experiments and the computational efficiency
improvement ranges from 3% to 71%. Moreover, the tests on the five
combinatorial ant colony algorithm variants show that the probability
of finding the global optimal solution using the EACO algorithm is
higher than that of the conventional ant colony algorithms.

Acknowledgements

We gratefully acknowledge the funding from DOE National Energy Laboratory
grant # DEFE0012451.

References

1.	 Diwekar U, Xu W (2005) Improved genetic algorithms for deterministic
optimization and optimization under uncertainty. Part I. algorithms development.
Industrial and Engineering Chemistry Research 44: 7138-7146.

2.	 Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220: 671-680.

3.	 Holland JH (1975) Adaptation in natural and artificial systems: An introductory
analysis with applications to biology, control, and artificial intelligence. University
of Michigan press: Ann Arbor, MI.

http://pubs.acs.org/doi/abs/10.1021/ie049127d?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie049127d?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie049127d?journalCode=iecred
http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/TemperAnneal/KirkpatrickAnnealScience1983.pdf
http://www2.stat.duke.edu/~scs/Courses/Stat376/Papers/TemperAnneal/KirkpatrickAnnealScience1983.pdf
https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems
https://mitpress.mit.edu/books/adaptation-natural-and-artificial-systems

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm Intel
Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

Page 10 of 10

Volume 5 • Issue 2 • 1000131
Int J Swarm Intel Evol Comput
ISSN: 2090-4908 SIEC, an open access journal

4.	 Dorigo M (1992) Optimization, learning and natural algorithms. PhD Thesis,
Dept. of Electronics, Politecnico di Milano, Italy.

5.	 Senvar O, Turanoglu E, Selcuk, Kahraman C (2013) Usage of Metaheuristics
in Engineering: A Literature Review. Meta-Heuristics Optimization Algorithms in
Engineering, Business, Economics, and Finance Pandian M. Vasant pp: 484-528.

6.	 Dorigo M, Stutzle T (2004) Ant colony optimization theory. A Brandford Book,
The MIT Press, Cambridge, Massachusetts.

7.	 Chebouba A, Yalaouia F, Smati A, Amodeo L, Younsi K, et al. (2009) Optimization
of natural gas pipeline transportation using ant colony optimization. Computers
& Operations Research 36: 1916-1923.

8.	 Zecchin A, Simpson A, Maier H, Leonard M, Roberts A, et al. (2006) Application
of two ant colony optimization algorithms to water distribution system
optimization. Mathematical and Computer Modelling 44: 451-468.

9.	 Liao C, Juan H (2007) An ant colony optimization for single-machine tardiness
scheduling with sequence-dependent setups. Computers & Operations
Research 34: 1799-1909.

10.	Blum C (2005) Beam-ACO hybridizing ant colony optimization with beam
search: an application to open shop scheduling. Computers & Operations
Research 32: 1565-1591.

11.	Liao T, Montes De Oca MA, Aydin D, Stutzle T, Dorigo M (2011) An incremental
ant colony algorithm with local search for continuous optimization pp: 1-17.

12.	Liao T, Stutzle T, Montes De Oca MA, Dorigo M (2014) A unified ant colony
optimization algorithm for continuous optimization. European Journal of
Operational Research 234: 597-609.

13.	Socha K, Blum C (2007) An ant colony optimization algorithm for continuous
optimization: Application to feed-forward neural network training. Neural
Computing and Applications 16: 235-247.

14.	Socha K, Dorigo M (2008) Ant colony optimization for continuous domains.
European Journal of Operational Research 185: 1155-1173.

15.	Schluter M, Egea J, Banga J (2009) Extended ant colony optimization for non-
convex mixed integer nonlinear programming. Computers and Operations
Research 36: 2217-2229.

16.	Schluter M, Gerdts M, Ruckmann JJ (2012) A numerical study of MIDACO on
100 MINLP benchmarks. Optimization 61: 873-900.

17.	Socha K (2009) Ant Colony Optimization for Continuous and Mixed-Variable
Domains.

18.	Diwekar UM, Kalagnanam JR (1997) Efficient sampling technique for
optimization under uncertainty. AIChE Journal 43: 440-447.

19.	Diwekar UM, Ulas S (2007) Sampling Techniques. Kirk-Othmer Encyclopedia
of Chemical Technology 26.

20.	Kim K, Diwekar UM (2002) Efficient combinatorial optimization under
uncertainty 2 Application to stochastic solvent selection. Industrial and
Engineering Chemistry Research 41: 1285-1296.

21.	Kim K, Diwekar UM (2002) Hammersley stochastic annealing: Efficiency
improvement for combinatorial optimization under uncertainty. IIE Transactions
Institute of Industrial Engineers 34: 761-777.

22.	Zhu W, Lin G (2011) A dynamic convexized method for nonconvex mixed
integer nonlinear programming. Computers & Operations Research 38: 1792-
1804.

23.	Schluter M, Gerdts M (2010) The Oracle penalty method. Journal of Global
Optimization 47: 293-325.

24.	Kalagnanam JR, Diwekar UM (1997) An efficient sampling technique for off-line
quality control. Technometrics 39: 308-319.

25.	Leguizamón G, Coello C (2010) An alternative ACOR algorithm for continuous
optimization problems. In: Dorigo M et al. (eds.) Proceedings of the seventh
international conference on swarm intelligence, ANTS. LNCS; 6234: 48-59.
Berlin, Germany: Springer.

26.	Kim K, Diwekar UM (2002) Efficient combinatorial optimization under
uncertainty. 1. Algorithmic development. Industrial and Engineering Chemistry
Research 41: 1276-1284.

27.	Gebreslassie BH, Diwekar UM (2015) Efficient ant colony optimization for
computer aided molecular design: Case study solvent selection problem.
Computers & Chemical Engineering 78:1-9.

28.	Benavides PT, Gebreslassie BH, Diwekar UM. (2015) Optimal design of
adsorbents for NORM removal from produced water in natural gas fracking.
Part 2: CAMD for adsorption of radium and barium. Chemical Engineering
Science 137: 977-985.

29.	Diwekar UM (2003) Introduction to Applied Optimization. Kluwer Academic
Publishers, Norwell, MA.

30.	Bullnheimer B, Hartl RF, Strauss C (1997) A New Rank Based Version of the
Ant System - A Computational Study. Central European Journal for Operations
Research and Economics.

31.	Stutzle T, Hoos H (1997) The MAX–MIN Ant System and local search for
the traveling salesman problem. Proceedings of the 1997 IEEE International
Conference on Evolutionary Computation pp: 309-314.

Citation: Diwekar UM, Gebreslassie BH (2016) Efficient Ant Colony
Optimization (EACO) Algorithm for Deterministic Optimization. Int J Swarm
Intel Evol Comput 5: 131. doi: 10.4172/2090-4908.1000131

http://www.igi-global.com/chapter/usage-metaheuristics-engineering/69895
http://www.igi-global.com/chapter/usage-metaheuristics-engineering/69895
http://www.igi-global.com/chapter/usage-metaheuristics-engineering/69895
http://www.sciencedirect.com/science/article/pii/S0304397505003798
http://www.sciencedirect.com/science/article/pii/S0304397505003798
http://dl.acm.org/citation.cfm?id=1465905
http://dl.acm.org/citation.cfm?id=1465905
http://dl.acm.org/citation.cfm?id=1465905
http://www.sciencedirect.com/science/article/pii/S0895717706000069
http://www.sciencedirect.com/science/article/pii/S0895717706000069
http://www.sciencedirect.com/science/article/pii/S0895717706000069
http://www.sciencedirect.com/science/article/pii/S0305054805002467
http://www.sciencedirect.com/science/article/pii/S0305054805002467
http://www.sciencedirect.com/science/article/pii/S0305054805002467
http://www.sciencedirect.com/science/article/pii/S0305054803003599
http://www.sciencedirect.com/science/article/pii/S0305054803003599
http://www.sciencedirect.com/science/article/pii/S0305054803003599
http://iridia.ulb.ac.be/IridiaTrSeries/rev/IridiaTr2011-005r002.pdf
http://iridia.ulb.ac.be/IridiaTrSeries/rev/IridiaTr2011-005r002.pdf
http://www.sciencedirect.com/science/article/pii/S0377221713008473
http://www.sciencedirect.com/science/article/pii/S0377221713008473
http://www.sciencedirect.com/science/article/pii/S0377221713008473
http://link.springer.com/article/10.1007%2Fs00521-007-0084-z#page-1
http://link.springer.com/article/10.1007%2Fs00521-007-0084-z#page-1
http://link.springer.com/article/10.1007%2Fs00521-007-0084-z#page-1
http://natcomp.liacs.nl/SWI/papers/ant.colony.optimization/Ant colony optimization for continuous domains.pdf
http://natcomp.liacs.nl/SWI/papers/ant.colony.optimization/Ant colony optimization for continuous domains.pdf
http://www.sciencedirect.com/science/article/pii/S0305054808001524
http://www.sciencedirect.com/science/article/pii/S0305054808001524
http://www.sciencedirect.com/science/article/pii/S0305054808001524
http://www.ingentaconnect.com/content/tandf/gopt/2012/00000061/00000007/art00005
http://www.ingentaconnect.com/content/tandf/gopt/2012/00000061/00000007/art00005
http://iridia.ulb.ac.be/~mdorigo/HomePageDorigo/thesis/phd/SochaPhDThesis.pdf
http://iridia.ulb.ac.be/~mdorigo/HomePageDorigo/thesis/phd/SochaPhDThesis.pdf
http://onlinelibrary.wiley.com/doi/10.1002/aic.690430217/abstract
http://onlinelibrary.wiley.com/doi/10.1002/aic.690430217/abstract
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.sampdiwe.a01/abstract
http://onlinelibrary.wiley.com/doi/10.1002/0471238961.sampdiwe.a01/abstract
http://pubs.acs.org/doi/abs/10.1021/ie0101691?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101691?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101691?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101689?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101689?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101689?journalCode=iecred
http://www.sciencedirect.com/science/article/pii/S0305054811000566
http://www.sciencedirect.com/science/article/pii/S0305054811000566
http://www.sciencedirect.com/science/article/pii/S0305054811000566
http://www.sciencedirect.com/science/article/pii/S0305054811000566
http://www.sciencedirect.com/science/article/pii/S0305054811000566
http://link.springer.com/chapter/10.1007/978-3-642-15461-4_5#page-1
http://link.springer.com/chapter/10.1007/978-3-642-15461-4_5#page-1
http://link.springer.com/chapter/10.1007/978-3-642-15461-4_5#page-1
http://link.springer.com/chapter/10.1007/978-3-642-15461-4_5#page-1
http://pubs.acs.org/doi/abs/10.1021/ie0101689?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101689?journalCode=iecred
http://pubs.acs.org/doi/abs/10.1021/ie0101689?journalCode=iecred
http://www.sciencedirect.com/science/article/pii/S0098135415001052
http://www.sciencedirect.com/science/article/pii/S0098135415001052
http://www.sciencedirect.com/science/article/pii/S0098135415001052
http://www.sciencedirect.com/science/article/pii/S0009250915004972
http://www.sciencedirect.com/science/article/pii/S0009250915004972
http://www.sciencedirect.com/science/article/pii/S0009250915004972
http://www.sciencedirect.com/science/article/pii/S0009250915004972
http://dl.acm.org/citation.cfm?id=1965039
http://dl.acm.org/citation.cfm?id=1965039
http://epub.wu.ac.at/616/1/document.pdf
http://epub.wu.ac.at/616/1/document.pdf
http://epub.wu.ac.at/616/1/document.pdf
http://www.gta.ufrj.br/ensino/cpe717-2011/stutzle97-icec.pdf
http://www.gta.ufrj.br/ensino/cpe717-2011/stutzle97-icec.pdf
http://www.gta.ufrj.br/ensino/cpe717-2011/stutzle97-icec.pdf

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Ant Colony Optimization
	ACO for Discrete optimization problems
	ACO for Continuous domain optimization problem
	ACO for Mixed-integer nonlinear programming problem

	Oracle Penalty Method for Constraints
	Hammersley Sequence Sampling
	Monte Carlo Sampling
	Efficient Ant Colony Optimization (EACO) Algorithm
	Benchmark problems
	Results and Discussions
	Benchmark Problems

	Conclusions
	Acknowledgements
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	Table 12
	References

