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Abstract
A bioanode with improved enzyme orientation was developed to achieve an efficient enzyme reaction and 

electron transfer on an electrode surface. A highly stable PQQ-dependent glucose dehydrogenase (PQQ-GDH) 
isolated from a hyper-thermophilic archaeon was employed as an electron conversion element. PQQ-GDH is 
expected to maintain battery properties and to have a long battery life. To immobilize the enzyme onto the electrode 
with appropriate orientation, we introduced a His-tag to the N-terminal of PQQ-GDH by a genetic technique and 
utilized the affinity bond between His-tag and Cu atoms. The catalytic current density in the presence of substrate 
was 18.6 μA/cm2 without a mediator. The current density of the oriented electrode was approximately 90 times higher 
than that of the non-oriented electrode. By immobilizing the enzyme with orientation, the accessibility between the 
enzyme and substrate for enzyme reaction increased because the active site of PQQ-GDH is located opposite the 
electrode. Because enzymes have different orientations at the surface of the non-orientated electrode, the efficiency 
of the electrode was lower than that of the high-orientation electrode. The results of the present study present a 
potentially promising finding for application to practical bioelectric devices, such as bio-fuel cells and biosensors.

Keywords: Bioanode; PQQ-GDH; Oriented immobilization; Direct
electron transfer

Introduction
Bio-fuel cells catalyzed by enzymes are expected to provide 

next-generation energy supply sources for microelectronic devices 
because they are safe to use and are light in weight and can be easily 
miniaturized [1-4]. The principle of bio-fuel cells is based on the 
redox reaction between the enzyme and substrate. The substrates are 
prepared from biomass and include glucose, methanol, ethanol, and 
lactate. Previously, many researchers have developed enzymatic bio-
fuel cells [5-13] that were shown to have current and power densities 
to some extent, but were limited by major issues including low output 
of the battery because of inefficient redox reaction on the electrode 
surface and lower active lifetime because of low stability of enzyme 
[14,15]. Therefore, it has been considered difficult to achieve a practical 
bio-fuel cell thus far. 

In the present study, in order to overcome the above issues, the 
following two strategies were used. 

The first strategy was to increase the orientation of the enzyme 
immobilized onto the electrode surface. Because electron-transfer 
between the enzyme and electrode, and enzyme reactivity on the 
electrode surface, depend on the orientation of enzyme [16-19], 
controlled and oriented immobilization of enzyme onto the electrode 
surface is required [20-25]. However, it is not easy to modulate 
macromolecules, e.g., enzymes and peptides, on the electrode surface. 
Because macromolecules have an intricate chemical and physical 
structure, the enzyme orientation on the electrode surface is the 
major rate-limiting factor for enzyme function. In the past, various 
approaches, such as covalent cross-linking [26,27], Layer-By-Layer 
(LBL) [28-30], and Self-Assembled Monolayers (SAM) [31-34], have 
been reported for the immobilization of macromolecules on solid 
substrates. Almost all of these techniques have been based on covalent 
cross-linking through chemical reactions that lack site selectivity. Using 
the above immobilization methods, specificity of the reaction site in the 
macromolecule cannot be obtained because the macromolecules have 
more than one reactive group on their surface.

 The second approach is to employ PQQ-GDH obtained from 
the hyperthermophilic archaeon, Pyrobaculum aerophilum [35]. 
PQQ-GDH from hyperthermophiles, which can grow at or near the 
boiling point of water, is much more stable than that obtained from 
mesophilic microorganisms or eukaryotic organisms. In addition, 
PQQ-GDH can utilize artificial dyes such as 2,6-Dichloroindophenol 
(DCIP) and ferricyanide as electron acceptors. PQQ-GDH has high 
potential for utilization as a specific element for a bioanode electrode 
because electrons from D-glucose can be introduced to the electrode 
using an artificial dye as the mediator. Use of PQQ-GDH from the 
hyperthermophilic archaeon provided a long cell life and high power 
output. 

In the present study, we developed a bio-anode electrode by 
highly oriented immobilization of PQQ-GDH. To immobilize the 
enzyme with orientation, we employed the interaction between His-
tag (consisting of six successive histidine residues) and the Cu atom. 
As the His-tag acts as an immobilization site on the electrode surface, 
the enzyme can be immobilized with a high degree of orientation 
(Figure 1). We have introduced the His-tag into the PQQ-GDH from 
Pyrobaculum aerophilium by using a genetic technique. The PQQ-
GDH-(His-tag) was immobilized onto a Cu-deposited electrode with 
a high degree of orientation. The highly oriented immobilized PQQ-
GDH electrodes were investigated using electrochemical techniques to 
obtain information on the properties of the constructed electrode.
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Material and Methods
Chemicals

D(+)-Glucose, sodium chloride, copper(II) sulfate pentahydrate 
(CuSO4

5H2O), nickel(II) sulfate hexahydrate (NiSO4
6H2O), 

imidazole, 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide 
Hydrochloride (EDC) and Pyrroloquinoline quinone disodium salt 
(PQQ) were purchased from Wako Pure Chemical Industries, Ltd. 
(Osaka, Japan). Potassium chloride (KCl) and 2-[4-(2-Hydroxyethyl) 
piperazin-1-yl] ethanesulfonic acid (HEPES) were obtained from 
Nacalai Tesque. Inc. (Kyoto, Japan). 2-Morpholinoethanesulfonic 
acid, monohydrate (MES) was purchased from Dojindo Laboratories 
(Kumamoto, Japan). The water used in the present experiment was first 
deionized and passed through a Milli-Q water purification system from 
Millipore Co. (Bedford, MA, USA).

Preparation of PQQ-GDH-(His-tag)

To prepare purified PQQ-GDH-(His-tag) by nickel affinity 
chromatography, a six-His sequence was fused at the N-terminal 
of the PQQ-GDH protein. The pET15b/PaeAsd plasmid encoding 
PQQ-GDH was used as the PQQ-GDH-(His-tag) expression vector. 
The expression vector of the PQQ-GDH-(His-tag) fusion protein was 
constructed as follows. The coding region of the PQQ-GDH gene was 
obtained by digesting pET/PaeAsd with NdeI/BamHI [36], and then 
the fragment was ligated with the expression vector pET15b (Novagen, 
Merck Millipore Japan (Tokyo, Japan)), which had been linearized 
with NdeI and BamHI. The pET15/PaeAsd plasmid was verified by 
DNA sequencing. 

PQQ-GDH-(His-tag) was expressed in Escherichia coli BL21-
CodonPlus(DE3)-RIL grown in LB medium containing ampicillin. 
Recombinant PQQ-GDH-(His-tag) proteins were induced by 
adding 1 mM isopropyl-β-D-thiogalacto-pyranoside at OD600 0.6, 
and cultivation was continued for an additional 4 h. Cells were 
harvested by centrifugation at 10,000×g, suspended in lysis buffer (20 
mM HEPES (pH 7.5), 100 mM NaCl, 1 mM CaCl2), and disrupted 
by ultrasonication. The cell debris was removed by centrifugation 
(12,000×g for 10 min) and the supernatant solution was used as the 
crude extract. The enzyme solution was incubated at 80°C for 10 min. 
Denatured proteins were separated by centrifugation (12,000×g for 10 
min).The resultant supernatant was used for further purification. To 
reconstitute the apoenzyme with PQQ, a 10-fold molar excess of PQQ 
was added into the enzyme solution and incubated it for 16 h at 4°C. 

To obtain purified PQQ-GDH-(His-tag), the holoenzyme, after 
reconstitution of the apoenzyme with PQQ, was purified by using Ni-

NTA chromatography (HisTrap HP column; GE Healthcare UK Ltd, 
Little Chalfont, Bucks, UK). The enzyme was loaded onto the column 
equilibrated with 20 mM potassium phosphate buffer at pH 7.5 and 
eluted from the column using an elution buffer (300 mM NaCl, 500 
mM imidazole, 20 mM potassium phosphate buffer, at pH 7.0). The 
purified PQQ-GDH-(His-tag) proteins were dialyzed to remove 
imidazole and replace the buffer (50 mM HEPES pH 7.5), and stored at 
room temperature until further use.

The activity of PQQ-GDH-(His-tag) was measured using 
2,6-Dichlorophenolindophenol (DCIP) as described previously [37].

Electrochemical experiments 

Cyclic Voltammetry (CV) was conducted using a three-electrode 
cell at 50°C on an ALS electrochemical analyzer (BAS Inc., Tokyo, 
Japan). The working electrode was gold (geometrical area: 0.02 cm2, 
BAS Inc.), the counter electrode was a platinum wire, and the reference 
electrode was Ag/AgCl. All potential values below are reported with 
respect to the Ag/AgCl reference electrode. The electrolyte solution was 
50 mM HEPES buffer at pH 7.5. The CV measurements were recorded 
at a potential scan rate of 0.01 V/s. The working electrode was sonicated 
in 50 mM H2SO4, and then the surface was polished with a micro-cloth 
and alumina slurry suspension (φ=0.1 μm). The electrode was scanned 
50 times at a potential scan rate of 0.1 V/s, at potentials ranging from 
-1.0 V to 1.0 V. Finally, the electrode was sonicated in Milli-Q water. 

Electrode modification

Au/Cu/ PQQ-GDH-(His-tag): CuSO4 was dissolved in 100 mM 
sodium chloride to a final concentration of 100 mM. Copper deposition 
was controlled by applying a potential of -0.3 V vs. Ag/AgCl to the Au 
electrode for 5 min. Then, the electrode was rinsed with Milli-Q water 
and immersed in 0.98 mg/ml PQQ-GDH-(His-tag) solution (at room 
temperature, 5 min) to immobilize the PQQ-GDH-(His-tag). The 
electrode was rinsed again with 50mM HEPES buffer at pH 7.5. 

C/ PQQ-GDH-(His-tag): The freshly polished carbon electrode 
(0.07 cm2) was immersed in 100 mM H2SO4 for 1 h, washed, and 
electrolytically oxidized at +1.2 V in 5% K2Cr2O7 in 10% HNO3 to 
introduce carboxyl groups on the electrode surface. The electrode was 
immersed in freshly prepared 400 mM EDC solution in 10 mM MES 
buffer at pH 4.5 for 1 h, and then immersed in 0.98 mg/ml enzyme 
solution overnight at room temperature. 

Estimation of electrode area

CV was conducted with the Au/Cu electrode and the carbon 
electrode in the 25 mM potassium ferricyanide/25 mM potassium 
ferrocyanide solution. Potassium ferrocyanide and potassium 
ferricyanide react as shown in Eq. (1). The peak reflecting the number 
of molecules that have reacted at the electrode surface obtained from 
CV and the electrode area (A) was calculated using the peak and Eq. (2). 
Ip is the peak current, n is the number of electrons, DR is the diffusion 
coefficient, ν is the scan rate, and C is the concentration.

4 3
6 6[ ( ) ] [ ( ) ]Fe CN Fe CN e− − −+ 		                 (1)

3/2 1/2 1/2269 *
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D CR vη
=   			                      (2)

Quantification of the immobilized enzyme

To remove the enzyme from electrode surface, the Au/Cu/ PQQ-

PQQ-GDH

His-tag

Au electrode
Cu Cu Cu

Figure 1: Schematic illustration of PQQ-GDH-(His-tag) immobilization onto the 
Cu deposited electrode surface. Deposited Cu (orange spheres) and His-tag 
(green arcs) are forming affinity binding.
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GDH-(His-tag) electrode was immersed in the 500 mM imidazole 
solution (0.2 ml) for 30 min at room temperature. Quantification 
was performed using this solution. We determined the amount 
of immobilized His-PQQGDH using a protein quantification kit 
(InvitrogenTM CBQCA Protein Quantitation Kit (C-6667); Life 
Technologies Co., Carlsbad, CA, USA) and followed the kit instructions. 
Bovine serum albumin was used as the standard protein.

Results and Discussion
Long-term Stability of PQQ-GDH-(His-tag)

It is known that PQQ-GDH-(His-tag) from the hyperthermophilic 
archaeon P. aerophilum is much more stable than PQQ-GDH from 
mesophilic organisms under a variety of conditions such as a wide 
range of pH values and temperatures [38]. For this enzyme, smaller 
overall volumes have been shown to contribute to greater protein 
thermostability. Aromatic interactions are also known to participate 
in the stabilization of enzyme structures. When used as an electrode 
for a bio-fuel cell, long-term stability is also an important property. 
Assuming storage at room temperature, we examined the long-
term stability of the enzyme. The PQQ-GDH-(His-tag) solution was 
stored at room temperature, and the activity was measured every 
few days. Enzyme activity was measured using DCIP, and even after 
approximately one month, the enzymatic activity of PQQ-GDH-(His-
tag) was maintained at more than 90% (Figure 2).

Electrocatalytic reaction of immobilized PQQ-GDH-(His-
tag)

PQQ-GDH-(His-tag) catalyzes the oxidation of D-glucose. Direct 
Electron Transfer (DET) is achieved by passing of electrons produced 
by oxidation of D-glucose to the electrode through the PQQ existing 
inside the enzyme. To immobilize the enzyme with orientation, the 
affinity between the His-tag and deposited Cu atoms was utilized. 
The His-tag domain is widely used for protein purification and for 
molecular immobilization using nickel-nitrilotriacetic acid (Ni-NTA) 
[39,40] because it can form a complex with transition metal ions. It 
was recently reported that not only transition metal ions, such as Ni2+, 
Co2+, Cu2+, Zn2+, but also zero-valent metals can form complexes [41]. 
Using this reaction, we can immobilize enzymes with a high degree 

of orientation via a His-tag, without requiring modification involving 
NTA. Therefore, we prepared the PQQ-GDH-(His-tag) modified 
electrode on the deposited Cu electrode (Au/Cu/PQQ-GDH-(His-
tag)). Figure 3 shows the CV of the catalytic reaction of the Au/Cu/
PQQ-GDH-(His-tag) electrode. Because deposited Cu atoms are not 
oxidized at less than 0 V, CV was performed from -0.3 V to 0 V. When 
using the Au/Cu/PQQ-GDH-(His-tag) in the absence of substrate, a 
small peak was observed at -0.11 V, which represents oxidation of PQQ 
in the enzyme by DET, which confirmed DET between the enzyme 
and electrode, as previously reported [36-38]. When 5 mM D-glucose 
existed in the electrolyte solution, the catalytic current arising from the 
oxidation reaction catalyzed by PQQ-GDH-(His-tag) was observed in 
the vicinity of -0.1 V vs. Ag/AgCl. When PQQ was not incorporated 
in the GDH and enzymes were not immobilized on the electrode, a 
similar peak was not observed, even after addition of D-glucose. These 
findings prove that a catalytic oxidation current was obtained from the 
reaction of immobilized enzymes on the Au/Cu electrode. 

Confirmation of highly oriented immobilization

We have confirmed that the PQQ-GDH-(His-tag) is immobilized 
to the Au/Cu electrode via the His-tag. His-tag is a short peptide chain 
consisting of six histidine residues that coordinates to the transition 
metal by sharing the electron density of the nitrogen of the imidazole 
ring of histidine in the His-tag. Upon imidazole treatment, imidazole 
molecules act antagonistically to the imidazole ring of histidine 
residues of His-tag; then, the His-tag leaves the Cu, and the protein is 
removed from the electrode surface. In the CV measurements using 
electrodes treated with imidazole, the peak value of the catalytic current 
of oxidation of D-glucose was dramatically decreased (Figure 4). With 
an increase in the concentration of imidazole, reduction of the peak 
value was also observed. Because PQQ-GDH-(His-tag) is definitely 
eliminated by imidazole treatment, the enzyme definitely binds to 
the electrode via Cu atoms. Therefore, the immobilized enzymes may 
achieve a high degree of orientation on the electrode.
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Figure 2: Long-term stability of PQQ-GDH-(His-tag) from 
hyperthermophilicarchaeon (n=3). Residual activity of the PQQ-GDH-(His-tag) 
(open circles) was measured after storage at room temperature.
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Figure 3: Typical cyclic voltammogram of the Au/Cu/ PQQ-GDH-(His-tag) 
electrode in the absence (dotted-line) and presence of 5 mM D(+)-Glucose (solid 
line) in 50 mM HEPES-NaOH buffer (pH 7.5) at a scan rate of 0.01 V/s.
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where n is the number of electrons transferred (2), F is the Faraday 
constant, R is the universal gas constant, T is the absolute temperature 
in Kelvin (313.15 K), A is the surface area of the electrode, Γ is 
the surface coverage, and ν is scan rate (0.01 V/s). From IpPQQ  (0.73× 
10-6 A (Figure 4 gray line)), the estimated number of molecules of 
the electroactive enzyme immobilized on the electrode surface (ΓPQQ) 
was 5.10×10-11 mol/cm2 for the Au/Cu/PQQ-GDH-(His-tag) electrode 
prepared via the His-Cu affinity bond. In conjunction with the above 
results, it was therefore suggested that 97% of the total immobilized 
enzyme molecules were maintained in an electroactive state. Similarly, 
from IpPQQ (0.15×10-6 A (CV data not shown)), 4.19×10-11 mol/cm2 
enzyme molecules were electroactive on the C/PQQ-GDH-(His-tag) 
electrode prepared via amide bonding. 

Electrochemical properties of the highly oriented electrode 
containing the His-tag and the non-orientated electrode obtained 
using a cross-linking reaction were compared. The results are shown in 
Table 1. Although the orientation of each electrode was different, the 
ΓPQQ values were very similar between the two electrodes. There were 
few differences between the electrodes regarding electron transfer. 
According to the three-dimensional structure of PQQ-GDH [35], the 
attached PQQ was in the center of the enzyme; therefore, it is considered 
that the distance between PQQ and the electrode was almost identical 
(Figure 5a). Thus, in the case of DET of PQQ, the orientation of the 
enzyme did not affect the efficiency of electrochemical reaction. 

The electroactive coverage on each electrode surface was calculated 
from the oxidization of PQQ and approximately the same for both 
electrodes. However, the current density (the current of PQQ was 
subtracted) of each electrode was quite different: 18.6 μA for the 
highly oriented electrode, and 0.20 μA for the non-oriented electrode. 
Therefore, it was shown that the highly orientated electrode was more 
efficient than the non-oriented electrode. In the highly orientated 
electrode, PQQ-GDH-(His-tag) is immobilized to Cu by a His-tag 
attached to the N-terminal of the enzyme. It is expected that the 
catalytic reaction is facilitated because accessibility of the substrate 
is not blocked, as the active site of the enzyme is located opposite 
to the electrode surface (Figure 5b). Because the enzyme molecules 
had different orientations on the non-oriented electrode surface, the 
efficiency was lower than that of the highly oriented electrode. These 
results demonstrated in this study will allow high-performance bio-fuel 
cells to be designed and constructed, and lead to practical usage.

Conclusion
In the present study, we developed an anode to realize a highly 

efficient reaction by focusing on affinity binding between Cu and His-
tag. In the study of electrodes for bio-fuel cell, the stability of the enzyme 
itself is a major challenge, but enzymes from hyperthermophiles can 
solve this problem because they have high thermostability and long-
term stability. In the PQQ-GDH used in this study, PQQ is present 

Effect of the high degree of orientation of the enzyme

We compared the efficiency of a highly oriented electrode 
containing a His-tag (Au/Cu/PQQ-GDH-(His-tag)) and a non-
oriented electrode functionalized by EDC (C/PQQ-GDH-(His-tag)). 
To evaluate the efficiency of enzyme reaction on the electrode surface, 
the properties of the electrode (electrode area and total amount of 
electroactive coverage on electrodes) were analyzed. 

The electrode area of the Cu-deposited Au electrode (Au/Cu) was 
determined using the electrode reaction of potassium ferricyanide. 
The value of -0.925 mA was obtained for the reduction peak; thus, 
the electrode area was estimated to be 0.40 cm2 by using equation (2). 
Before deposition, the geometric area of the Au electrode was 0.02 cm2, 
so the electrode area was increased by 20-fold compared with the bare 
Au electrode. 

To determine the total amount of immobilized enzyme on the 
electrode, we modified gold electrodes as described above and then 
washed off the His-tagged enzymes by immersing the electrode in 
an imidazole solution. After washing, the total amount of protein in 
the imidazole solution was measured. The protein concentration was 
determined according to the BSA calibration curve. PQQ-GDH-
(His-tag) attached to the modified gold electrode with a density 
of 5.25×10-11 mol/cm2. However, it was not possible to determine the 
amount of immobilized enzyme on the randomly oriented electrode 
because of the lack of an effective method.

CV was also used to study the DET electrochemistry of PQQ-
GDH-(His-tag) immobilized on the Au/Cu electrodes. PQQ-GDH-
(His-tag) shows DET properties derived from the redox of PQQ in CV 
measurements (Figure 3). In this study, the His-Cu affinity bond and 
EDC amide bond were used for enzyme modification on the Au/Cu/
PQQ-GDH-(His-tag) electrode and C/PQQ-GDH-(His-tag) electrode, 
and electroactive coverage of each electrode was estimated from 
the oxidation peak current of PQQ (IpPQQ). The peak current for an 
electrode-immobilized reactant is given by Eq. (3).
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Figure 4: Typical cyclic voltammogram of PQQ-GDH-(His-tag)/Cu/Au electrode 
in the presence of 5 mM D(+)-Glucose without treatment involving imidazole 
solution (dotted-line) and with treatment involving imidazole solution (solid line), 
in 50 mM HEPES-NaOH buffer (pH 7.5) at a scan rate of 0.01 V/s.

Electrode Current Density 
(µA/cm2)

IpPQQ(µA) Electroactive 
molecules (mol/ cm2)

Random 
Immobilization
(Covalent Bond) 0.20 0.15 4.19x10-11

High-oriented 
Immobilization
(His-tag affinity) 18.6 0.73 5.10x10-11

Table 1: Comparison of electrochemical properties in each electrode system.
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inside the enzyme, and electron transfer is performed through the 
PQQ to provide a current density of 18.6 μA/cm2 without mediators. 
We determined the amount of enzyme that existing on the surface of 
the electrode, and showed that a highly efficient electrode reaction 
was achieved by orientation of the enzymes. The His-Cu affinity bond 
allowed proper orientation of the active site, thereby permitting an 
effective electrode reaction. By employing His-PQQGDH from the 
hyperthermophilic archaeon P. aerophilum with a high degree of 
orientation, it may become possible to develop a practical bioanode 
with long-term stability.
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Figure 5: Schematic illustration of electron-transfer process on the highly 
oriented or randomly oriented enzyme layer between PQQ-GDH and electrode 
(a) Direct electron transfer of PQQ (b) Electrochemical catalytic reaction. 
Orientation of the enzyme does not affect the electron transfer through the PQQ 
(a). However, the enzymatic reaction is inhibited if the catalytic site was located 
on the electrode surface (b).
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