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Introduction
Advances in modern high precision methods of nanostructures 

growth such as molecular beam epitaxy, laser deposition, Stranski-
Krastanov mode, and metalorganic chemical vapor deposition, 
provide ample opportunities for production of not only the isolated 
QDs but also two or more closely spaced coupled QDs − quantum 
dot molecules (QDMs). Whereas QDs are artificial atoms, the QDMs 
are artificial molecules with bonding and anti-bonding orbitals [1]. 
From the practical point of view, an interesting coupling between QDs 
provides wide possibilities for QDMs applications in modern opto-and 
nanoelectronics. In contrast to atoms in molecules, the charge carriers’ 
confinement in each QD and the coupling between QDs in a QDM can 
be controlled separately. Redistribution of the energy spectrum and 
wave functions (WFs) in the QDM leads to dramatic changes in the 
optical and transport properties of QDMs compared to single QDs [2]. 
In real growth conditions, the obtained symmetric QDMs are rather 
rare; more often, due to various physical and technical reasons, grown 
lateral QDMs are asymmetric [3-5]. Similarities between the energy 
spectra of symmetric molecules (e.g., O2, H2, or N2) and symmetric 
QDMs, and, correspondingly, asymmetric molecules (e.g., CO, CO2, 
or NO2) and asymmetric QDMs potentially allow one to design various 
biochemical sensors and detectors with a single molecule sensitivity 
[6,7]. For applications in semiconductor based photonic devices 
[8,9] one needs to find the energy spectrum of charge carriers as well 
as the possible optical transitions in QDMs considering quantum 
confinement effects. Electronic and optical properties of QDMs largely 
depend on the shape and sizes of the QDs and the confining potential 
[10-14]. Significant differences in size and chemical composition of 
composite QDs complicate the theoretical description of the QDM 
properties. Obviously, the charge carrier is more likely to be localized 
in a large QD, yet the presence of one or more small satellites changes 
the charge carrier behavior fundamentally due to the rearrangement 
of energy levels in a large QD. This complex problem can be described 
analytically with the correct choice of the equation for the entire QDM 
surface [15]. Theoretical study of semiconductor QDMs allows reducing 
the number of expensive experiments to design the optimal structure 
of new generation photonic devices. In this paper, the electronic states 
and direct interband absorption of light are theoretically investigated 
in the asymmetric QDM having Cassini lemniscate shaped surface and 
the isthmus connecting two QDs (Figure 1). 

Electronic States
Let us consider an impermeable asymmetric QDM consisting of 

two QDs schematically shown on Figure 1. The surface equation of the 
QDM in cylindrical coordinates and the charge carrier (an electron or 
hole) potential energy in the QDM are as follows:
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where c1 and c2 are the focal length of the small and large semi-lemniscates 
respectively, a1 and a2 are the product of distances from foci to any 
point on the surface for each semi-lemniscate shaped QD, respectively. 
Note that the relationship between QDM geometric parameters allows 
one to describe the isthmus between QDs, but reduces the number of 
independent parameters. Similarly, a bond between atoms reduces a 
degree of freedom of a molecule. For simplicity of formulas, we will 
consider the case of equal effective masses in both QDs 
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Figure 1: Asymmetric cassini lemniscate shaped qdm.
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Strong confinement regime

In the strong confinement (SC) regime, Coulomb interaction 
between the electron and hole can be neglected, and the problem 
reduces to the determination of their energy states independently. As 
it follows from the geometrical shape of the QDM, the electron motion 
in z direction is faster than in perpendicular direction. Hereafter all 
units are dimensionless, if otherwise is not specifically noted. The 
geometric adiabatic approximation allows one to represent the system 
Hamiltonian as a sum 1 2

ˆ ˆ ˆ ( , , )H H H U r zϕ= + + of the fast 1Ĥ  and slow
2Ĥ  subsystem Hamiltonians, 

where 
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Bohr radius of an electron, is a dielectric permittivity, e and *
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the charge and effective mass of an electron, respectively. WFs of the 
problem are sought in the form
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where C is a normalization constant. At a fixed value of the 
coordinate z of the slow subsystem the particle motion is localized 
in a two-dimensional potential well with an effective width, where
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are given by the first kind

Bessel functions 
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and A(z) is a normalization constant. Taking into account boundary 
conditions, one obtains the following expression for the effective two-
dimensional motion energy: 
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where αn,m are roots of the first kind Bessel functions. The energy 
(6) plays role of an effective potential in the slow subsystem 
Schrödinger equation. For lower energy levels, the electron is localized 
in the geometrical center of one of the QDs, with coordinates 
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= ±  Expanding (6) in a power series around these 

points, one gets the expression for the small and large QDs respectively 
(Figure 2)
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geometric parameters and ensures the continuity of the approximated 

effective confinement potential function at the point z=0. Usually, 
in the problems of QDs energy spectra determination, the effective 
potential of the slow subsystem turns out parabolic due to the adiabatic 
approximation application [15].

In contrast, in current problem the electron is influenced by the 
asymmetric double parabolic effective potential due to the specific 
geometric form of the QDM. Further, using the geometric adiabatic 
approximation technique, one solves the Schrödinger equation with 
the effective potential (7):
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which solutions are the parabolic cylinder functions Dv (t):
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Total energy of electron in the QDM for the SC regime is 
determined from the sewing of WFs (9) at the point z=0:
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Weak confinement regime

In this case, the exciton binding energy (in all three geometrical 
directions) prevails over the confinement energy; Coulomb interaction 
predominates, and the weak influence of the QDM walls appears as a 
small correction in the Hamiltonian: equation (12)
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Where * *
e hM m m= +  is the mass of the exciton, and 
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 is 
the reduced mass of the exciton.	

The system WFs in the weak confinement (WC) regime can be 
represented as
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Figure 2: Confinement potential of the “slow” subsystem.
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of gravity of the exciton. For the exciton center of gravity, one gets the 
energy Gr analogous to the (11), with the exciton mass M instead of the 
relative motion, 
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where is the exciton effective radius. Finally, for the total energy and 
WFs one obtains
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Where Yl,m(θ,ϕ) are spherical functions.

Direct Interband Absorption of Light
 Let us consider now the direct interband absorption of light in the 

asymmetric QDM in the SC regime. The absorption coefficient for the 
heavy hole approximation ( *

em ) is determined by the expression [16]:
2
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where α and α′ are the quantum number (QN) sets corresponding to 
the electron and a heavy hole, Eg is the bandgap of a bulk semiconductor, 
is an incident light frequency, and A is a quantity proportional to the 
square of the matrix element taken by the Bloch functions. For the 
absorption edge (AE), one gets the following expression describing the 
dependence of the effective band gap on the parameters a1 and c1: 
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 AE shifts to the long wave 

region with an increase in the parameter a1, whereas the increase in the 
c1 shifts AE to the short wave region. Quantum transitions are allowed 
for the energy levels with the magnetic QNs m=-m, and for the fast 
subsystem QNs n=n′. Slow subsystem selection rules are completely 
removed due to the continuity of logarithmic

 Derivatives of the WFs (11), and the analytical expression (18) is 
given taking into account above mentioned selection rules.

For the WC regime, in view of the exciton localization in a vicinity 
of the QD geometric center, the absorption coefficient is given by the 
following expression: 
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where E represents the energy [17] in dimensional units. It should be 
noted, that equation only for the ground state, when l=m=0 (l is the 
orbital QN of the exciton). In this regime one obtains the following 
expression for the AE: 
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shift of the exciton energy level with changing parameters of the QDM 
is determined by the total mass of the exciton.

Discussion of Results 
In general, the geometric adiabatic approximation application 

for the QDs energy spectra calculations leads to the forming of the 
slow subsystem energy levels families for each energy level of the fast 
subsystem. Also, in most cases, the slow subsystem energy levels turn 
out equidistant, since the effective confinement potential is parabolic. 
As it is seen from (7), the slow subsystem confinement potential has 
the form of an asymmetric double parabola, in contrast to the other 
cases of the geometric adiabatic approximation application. Obviously, 
now the slow subsystem energy spectra are non-equidistant. Moreover, 
some levels are double split due to the tunneling possibility between two 
QDs, and the magnitude of the splitting depends on the geometrical 
parameters of the QDM and the fast subsystem QN.

Figure 3 represents the dependence of the first family of the 
energy levels in the QDM on the parameter a1 at a given value of the 
parameter a2 and semi-lemniscate focal length c1. With an increase in 
the parameter a1 the energy curves decrease, as a consequence of the 
increase in the isthmus connecting two QDs. At the same time, the 
magnitude of the splitting of the levels varies due to the fact that the 
probability of the electron tunneling from one QD to another increases 
for large values of a1. An increase in the parameter a1 leads to the electron 
spectrum modification and new energy levels arise in an increased 
quantum well. But the dependence of energy levels splitting on a1 is 
non-monotone, since the higher levels existence affects probability of 
tunneling of lower levels. In other words, inter-level distances decrease 
at first, then increase and decrease again (Figure 4). The lower levels 
demonstrate step-like arrangement. It should be noted that for small 
values of the isthmus width, the tunneling probability decreases, the 
curves of the singlet and triplet states merge, while for the larger values 
of the isthmus width situation changes, and the splitting is more for 
the higher positioned levels. Thus, at a2=2.4 and N=0, the singlet-triplet 
energy levels splitting is ∆E≈0.25ER, whereas at N=1 the splitting is ∆E≈ 
1.12ER. All numerical calculations were performed for the GaAs QDM 
with the following parameters: *

em =0.067me, 
*
em =0.12 *

hm , where me is 
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Figure 3: The dependence of the first family of the electron energy levels in the 
asymmetric QDM on the parameter “a1” at a given value of the semi-lemniscate 
focal length “c1” and parameter “a2”.
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a free electron mass, k=13.8, ER=5.275 meV, aB =104 A0 and ah=15 A0 are 
the effective Bohr radii for the electron and the hole, respectively, and 
Eg=1.43 eV is a bandgap of a bulk semiconductor. Opposite behavior of 
the energy levels is observed in Figure 4., which shows the dependence 
of the first family of the electron energy levels in the QDM on the 
semi-lemniscate focal length c1 at a given values of the parameters a1 
and a2. Increase in the parameter c1 leads to the increase of the energy 
levels, conditioned by the increase in the distance between two QDs 
and narrowing of the isthmus connecting them. At the same time, the 
increase in the semi-lemniscate focal length also leads to the decrease 
in the electron tunnelling probability. As a consequence, the energy 
levels splitting magnitude varies. Note, that at the value a1 c1, Cassini 
lemniscate transforms to Bernoulli lemniscate, corresponding to the 
case of the zero width isthmus between closely spaced QDs. However, 
the absence of the isthmus does not result in a complete removal of 
the splitting. Thus, at the value of a1=c1=2.2 the excited levels are still 
split due to a non-zero probability of the electron tunnelling. Further 
increase in the focal parameter leads to the final isolation of QDs.

Figure 5 plots the dependence of the electron energy on the 
parameter a2, for the given values of the parameters a1 and c1. As it can 
be seen from the figure, the zone of a step-like splitting is also observed 
in this case. With an increase in the parameter a2, the lower energy 
level (N=0) increases monotonically at first, then starting at the value 
a2 =a1=2.2, it almost does not respond to the further increase in the 
parameter, since the small QD becomes larger than the initially large 
QD after this point. In other words, the particle more likely localizes in 
a large QD and reacts weakly to the further increase in the parameter. 
A similar dependence is observed for the levels with N 1 also. For 
the higher energy levels outside the splitting zone, the increase in the 
parameter a2 does not introduce significant changes. 

Figure 6 plots the AE dependence on the parameter a1 at the 
given values of the parameters c1 and a2 in the SC regime. As it is seen 
from the figure, the increase in the isthmus results in the decrease 
in the AE due to the reduction of the confinement effects (red shift). 
The energy spectrum step-like behaviour manifests itself also in 
the AE dependences. The curve corresponding to the small value of 
the parameter c1 is positioned lower, since in this case the electron 
localization area in the QDM becomes wider. The opposite pattern 
is observed in the Figure 6b, which shows the dependence of the AE 
on the focal length distance c1. As expected, increase in c1 results in 
the blue shift of the edge frequencies, due to the confinement impact 
increase. For this reason, the curve corresponding to the small value 
of the a1 is positioned higher. Note also, that at the small values of the 
focal length the AE curves are positioned closer for the different values 
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of the parameter a1. The increase in the parameter c1 leads to increase 
of the curves discrepancy. 

Conclusion
From the above follows that during the growth it is possible to 

control the electron energy value and the splitting of the energy levels 
by manipulating sizes and the distance between QDs. It may promote 
the design of a new generation of the highly sensitive and selective 
sensors. In case when there is the coincidence in the energy split of 
the levels of the QDM and the potentially detectable analyte molecules, 
it is possible to achieve a successful tunneling of electrons from the 
analyte molecules to the QDM. It is important also that this tunneling 
is possible (most probable) only with the full concurrence of inter-
level distances of the QDM and a detectable molecule. This ensures 
high selectivity of the device, which will not detect another molecule 
(Figure 6) by mistake. For the design of high-precision devices the most 
accurate measurements of the splitting of the energy levels are needed. 
For this purpose the easiest is to measure the frequencies of the light 
absorption in the QDM. Knowing the specific absorption frequencies, 
it is not difficult to establish the difference between the energy levels 
and the amount of the splitting.
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