Eliminating Immunologically-Reactive Foods from the Diet and its Effect on Body Composition and Quality of Life in Overweight Persons

John E. Lewis**, Judi M. Woolger¹, Angelica Melillo¹, Yaima Alonso², Soyona Rafatjah³, Sarah A. Jones¹, Janet Konefal¹, Amine Sarabia¹, Susanna Leonard¹, Evan Long¹, Nicole Quicuti¹, Kathy Gonzalez² and Jared Tannenbaum¹

¹Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine
²Department of Medicine, University of Miami Miller School of Medicine

Abstract

Background: Given the relationship between chronic disease and poor nutritional habits, using strategies to address the crisis of poor health in the U.S. is necessary. We explored if overweight people wanting to lose weight could benefit from having the Immuno Bloodprint, a proprietary IgG-mediated food sensitivity test to determine which foods to eliminate from the diet. IgG-mediated antibodies are thought to be causal in some food hypersensitivity and thus related to overweight status.

Objective: This study assessed the effect of an IgG-mediated food sensitivity test in combination with a food elimination diet on body composition and secondary outcomes in people who wanted to lose weight and/or were overweight.

Methods: A total of 120 subjects aged 18 and over took part in the study. Subjects had to eliminate all reactive foods from their diet for 90 days. Body composition, blood pressure and pulse, and quality of life were assessed at baseline and 30-, 60-, and 90-day follow-up.

Results: Subjects who eliminated IgG-mediated reactive foods from their diet had reductions in weight, body mass index, waist and hip circumferences, resting diastolic blood pressure and had improvements in all indicators of quality of life according to the SF-36 from baseline to 90-day follow-up.

Conclusions and Context: Subjects were able to improve their body composition and quality of life in response to eliminating IgG reactive foods from the diet. This test may represent a strategy to counteract the severe U.S. obesity epidemic.

Objectives:

- Food Sensitivity Testing
- Elimination Diet
- Obesity

Introduction

Chronic diseases, such as cardiovascular/heart disease, obesity, and diabetes, account for the majority of deaths in the U.S. each year, and the care of these patients accounts for more than 75% of the nation’s medical costs [1]. In addition, behavioral causes, such as poor diet and being sedentary, account for nearly 40% of all deaths [2]. Many recent studies have implicated dietary factors in the cause and prevention of significant diseases, including obesity and heart disease. Thus, the best strategy for improving the health of the nation and reducing the number and costs of premature deaths lies in changing behavior, such as eating better.

Chronic diseases are likely to be multi-factorial involving a number of different predispositions, although the degree of the effect of any factor may vary from person to person. Many people are aware that dietary habits contribute to their condition, and some also believe that dietary intolerance, allergy, or sensitivity causes their symptoms so removing reactive foods from the diet may be beneficial. Determining food intolerance is typically difficult due to its uncertain etiology, non-specific symptoms, and relative inaccessibility of the affected organ. Thus, many efforts to test for food intolerance, especially in sufferers of digestive disorders, have predominantly looked at food allergy due to the incidence of Immunoglobulin E (IgE)-mediated antibody responses, although these immediate type reactions appear to be rare [3].

Therefore, symptomatic reactions to food might be caused by another immunologic mechanism, rather than dietary allergy. Such reactions might be Immunoglobulin G (IgG)-mediated antibodies, which result in a delayed response following exposure to a particular antigen, compared to IgE [4] and are suggested to be causal in some food hypersensitivity [5-7]. However, this mechanistic explanation is not consistently believed and is considered by some to be physiological [8-10], due in part because IgG food antibodies have been found in apparently healthy persons [11-13]. Nonetheless, IgG food antibodies may play a role in certain conditions, such as irritable bowel syndrome [14], obesity [15], type I diabetes [16], and migraine [17]. Thus, the purpose of this study was to evaluate the effectiveness of a novel food sensitivity test, the Immuno Bloodprint, in combination with an elimination diet based on the presence of IgG antibodies to food in persons wanting to lose weight and/or who were overweight or obese according to body mass index (BMI).

Abbreviations: Body mass index (BMI), Immunoglobulin E (IgE), Immunoglobulin G (IgG), and Waist/hip ratio (WHR).

Keywords: Food Sensitivity Testing; Elimination Diet; Obesity
Materials and Methods

Subjects

Potential subjects (n=120) who were interested in losing weight were recruited, screened, and enrolled at the University of Miami Miller School of Medicine between 2008 and 2010. The study was conducted with the approval of the Institutional Review Board for human subjects research, and all participants signed informed consent before commencing in the study. The sample comprised of 16% males (n=19) and 84% females (n=101) with a mean age of 45.5 years (SD=12.2; R=20, 70). The racial/ethnic distribution of the sample was as follows: 51% Hispanic (n=61), 38% white, non-Hispanic (n=46), 6% black, non-Hispanic (n=7), and 5% of other types (n=6).

Sample size

Based on the results of Atkinson et al. (2004), who utilized an IgG-mediated test and subsequent 12-week elimination diet for GI symptoms, we estimated that our sample would achieve at least a 5% improvement in body weight at the end of the intervention period (from baseline to 90-day follow-up) [18]. We calculated that a sample size of 75 subjects (with at least 80% power and an alpha level = 0.05) would be necessary to detect this difference. Our goal was to enroll at least 100 subjects in the study, and we were able to enroll 120.

Study design

Potential study candidates were approached and screened among consecutive patients who were being treated at the Internal Medicine Clinics and at the Center for Complementary and Integrative Medicine. Potential subjects were being treated for a wide range of medical and mental health problems and were identified by the clinicians as potential candidates for needing to lose weight. Subjects were identified as individuals with BMI 20 and above and/or who expressed an interest in losing weight. Subjects were enrolled in the study if they were not: (1) less than 18 years of age; (2) currently participating in another research trial for weight loss; (3) suffering from serious medical complications or chronic kidney disease; and/or (4) pregnant. Each subject agreed that might limit their participation, such as recent heart attack, stroke, or immunosuppressive treatment as individuals with BMI 20 and above and/or who expressed an interest in losing weight. Each participant was scheduled to return to receive the results and recommendations for each participant. The primary advice to each participant was to focus as much as possible on eliminating the reactive foods from the diet for the entire 90-day period. All participants were encouraged to contact the study team with questions, as they implemented their elimination diet.

Outcomes and assessment schedule

Each participant completed a basic demographics and medical history questionnaire at baseline. They were also asked to note any changes in type or amount of their medications during the course of the study. Criteria used to select the assessment instruments included: a) appropriateness for the population; b) ease of administration and scoring; c) experience administering these measures; and d) employment of measures involving a multi-method (i.e., self-report and physical measures) approach to enhance the validity of the overall assessment.

The primary outcomes of this study were measures of body composition, including: height and weight to assess BMI and hip and waist circumference to calculate waist/hip ratio (WHR). Subjects completed a 3-day food record at each assessment to list all food and beverage consumption during that particular time. Subjects recorded their intake from two weekdays and one weekend day prior to the assessment appointment to allow for fluctuations over a normal weekly period. Participants were instructed on how to complete the 3-day food record using common portion sizes and household measures. The 3-day food record at each assessment was used to gauge compliance to the elimination diet based on a comparison of the foods eaten during those three days to the Immuno Bloodprint results of reactive foods for that subject. For example, if a subject ate 20 different foods during the 3-day period and one of the foods was IgG-reactive according to the Immuno Bloodprint results, then the subject was 95% compliant with the diet for that particular assessment. We also assessed resting blood pressure and heart rate and quality of life with the SF-36 Health Survey [19], which provides psychometrically-based physical and mental health summary measures and a preference-based health utility index. The SF-36 provides a t-score for each scale or domain ranging from 0-100 with higher scores representing better perceived quality of life. Subjects were assessed on all outcome variables at baseline and 30-, 60-, and 90-day follow-up.

Statistical analysis

Data were analyzed using SPSS 19 (SPSS Inc., Chicago, IL) for Windows. Frequency and descriptive statistics were calculated on all variables. We utilized Linear Mixed Modeling (LMM) to assess the fixed effect of time on changes in our outcome variables from baseline to the 90-day follow-up period. If the type III test of the fixed effect of time and the parameter estimate of the baseline to the 90-day fixed effect were significant, then we used pairwise comparisons to determine the unique differences between baseline and follow-up values at 30, 60, and 90 days. LMM allowed us to account for subject attrition, inter-correlated responses between time points, and non-constant variability. The criterion for statistical significance was α = 0.05

Results

For all participants, the average number of IgG-reactive foods and ingredients was 14.8 (SD=7.2) with a range of 5 to 34. Average percent compliance to the diet was as follows: 30-day follow-up, 97.8%
For hip circumference, a significant fixed effect was found for time (F[3,30.5]=17.3, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[31.7]=4.9, p<0.01). Pairwise comparisons revealed that weight at baseline was significantly higher than at 30 days (mean difference=3.5; SE=1.4; 95% CI: -0.29, 7.72; p=0.08) and at 90 days (mean difference=3.7; SE=1.4; 95% CI: -0.29, 7.72; p=0.08). For systolic blood pressure, the fixed effect for time was non-significant (F[3,41.9]=3.0, p=0.05), and the parameter estimate between baseline and 90-day follow-up was also significant (t[40.9]=2.6, p<0.01). Pairwise comparisons revealed that diastolic blood pressure at baseline was slightly higher than at 60 days (mean difference=3.5; SE=1.4; 95% CI: -0.28, 7.23; p=0.08) and at 90 days (mean difference=3.7; SE=1.4; 95% CI: -0.29, 7.72; p=0.08). For heart rate, the fixed effect for time was non-significant (F[3,35.3]=0.3, p=0.83), and the parameter estimate between baseline and 90-day follow-up was also non-significant (t[27.2]=0.1, p=0.91).

Table 2 shows the descriptive values of all eight scales on the SF-36 at baseline and 30-, 60-, and 90-day follow-up. For physical functioning, a significant fixed effect was found for time (F[3,30.2]=9.1, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[56.5]=-5.0, p<0.01). Pairwise comparisons revealed

<table>
<thead>
<tr>
<th>Measures</th>
<th>Baseline</th>
<th>30 Days</th>
<th>60 Days</th>
<th>90 Days</th>
<th>F (df), p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
<td>80.1±17.2 (56, 142)</td>
<td>76.6±15.8 (56, 133)</td>
<td>74.7±16 (56, 131)</td>
<td>75±17.7 (56, 131)</td>
<td>17.1 (3, 27.7), p=0.01</td>
</tr>
<tr>
<td>BMI</td>
<td>29.0±5.5 (20, 46)</td>
<td>27.7±5.6 (19.43)</td>
<td>27.4±5.6 (21.43)</td>
<td>27.2±5.6 (21.43)</td>
<td>17.4 (3, 30.3), p<0.01</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>91.7±14.5 (66, 142)</td>
<td>85.9±12.7 (58, 125)</td>
<td>85.1±11.7 (66, 117)</td>
<td>84.3±12.4 (64, 114)</td>
<td>17.1 (3, 40.7), p<0.01</td>
</tr>
<tr>
<td>Hip circumference (cm)</td>
<td>106.4±14.4 (81, 140)</td>
<td>103.1±14.2 (12, 135)</td>
<td>103.4±13.5 (79, 135)</td>
<td>102.9±11.2 (90, 137)</td>
<td>4.3 (3, 32.0), p<0.01</td>
</tr>
<tr>
<td>Waist-Hip Ratio</td>
<td>0.86±0.11 (0.7, 1.5)</td>
<td>0.84±0.12 (0.6, 1.3)</td>
<td>0.83±0.09 (0.7, 1.1)</td>
<td>0.82±0.08 (0.7, 1.0)</td>
<td>2.8 (3, 34.2), p=0.06</td>
</tr>
<tr>
<td>Systolic BP (mm Hg)</td>
<td>123.2±17.2 (90, 194)</td>
<td>119.0±12.7 (88, 144)</td>
<td>119±15.1 (96, 162)</td>
<td>117.5±13.7 (95, 142)</td>
<td>2.3 (3, 41.2), p=0.09</td>
</tr>
<tr>
<td>Diastolic BP (mm Hg)</td>
<td>79.0±12.1 (52, 118)</td>
<td>75.9±9.1 (54, 96)</td>
<td>75.0±9.6 (58, 102)</td>
<td>74.0±7.3 (60, 87)</td>
<td>3.0 (3, 41.9), p=0.05</td>
</tr>
<tr>
<td>Heart rate (bpm)</td>
<td>73.6±10.7 (52, 102)</td>
<td>72.1±9.9 (52, 96)</td>
<td>73.3±8.9 (60, 90)</td>
<td>72.5±8.4 (60, 94)</td>
<td>0.3 (3, 35.3), p=0.83</td>
</tr>
</tbody>
</table>

Note: Values are mean ± standard deviation (minimum, maximum). The F test is for the fixed effect for time for the overall model.

Table 2: Physical and Mental Functioning at Baseline and 30, 60, and 90 Days.

<table>
<thead>
<tr>
<th>Measures</th>
<th>Baseline</th>
<th>30 Days</th>
<th>60 Days</th>
<th>90 Days</th>
<th>F (df), p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Functioning</td>
<td>86.5±17.9 (0, 100)</td>
<td>91.8±11.5 (50, 100)</td>
<td>91.7±9.9 (65, 100)</td>
<td>93.8±7.0 (75, 100)</td>
<td>9.1 (3, 30.2), p<0.01</td>
</tr>
<tr>
<td>Physical Role Functioning</td>
<td>83.9±21.4 (0, 100)</td>
<td>91.6±16.5 (31, 100)</td>
<td>88.3±14.1 (56, 100)</td>
<td>95.6±6.1 (81, 100)</td>
<td>10.4 (3, 39.4), p<0.01</td>
</tr>
<tr>
<td>Emotional Role Functioning</td>
<td>85.9±19.2 (25, 100)</td>
<td>91.7±16.2 (33, 100)</td>
<td>95.5±8.5 (75, 100)</td>
<td>93.3±8.6 (75, 100)</td>
<td>6.2 (3, 28.8), p=0.01</td>
</tr>
<tr>
<td>Mental Health</td>
<td>75.6±15.9 (35, 100)</td>
<td>83.0±15.1 (40, 100)</td>
<td>81.7±12.7 (55, 100)</td>
<td>86.5±10.1 (65, 100)</td>
<td>9.6 (3, 30.3), p=0.01</td>
</tr>
<tr>
<td>Social Functioning</td>
<td>80.1±22.8 (25, 100)</td>
<td>87.5±20.3 (38, 100)</td>
<td>88.5±14.2 (63, 100)</td>
<td>94.4±10.3 (63, 100)</td>
<td>9.8 (3, 35.3), p=0.06</td>
</tr>
<tr>
<td>Vitality</td>
<td>57.7±17.8 (18, 94)</td>
<td>69.9±16.2 (25, 100)</td>
<td>68.0±13.7 (44, 88)</td>
<td>70.3±14.7 (44, 100)</td>
<td>8.7 (3, 29.4), p=0.09</td>
</tr>
<tr>
<td>Bodily Pain</td>
<td>67.3±22.3 (0, 50)</td>
<td>78.4±14.3 (32, 90)</td>
<td>79.4±9.6 (62, 90)</td>
<td>78.5±13.8 (51, 90)</td>
<td>9.6 (3, 31.2), p<0.05</td>
</tr>
<tr>
<td>General Health</td>
<td>70.9±19.6 (5, 100)</td>
<td>82.4±13.8 (52, 100)</td>
<td>79.3±13.4 (52, 100)</td>
<td>81.1±11.0 (57, 100)</td>
<td>9.4 (3, 28.0), p=0.83</td>
</tr>
</tbody>
</table>

Note: Values are mean ± standard deviation (minimum, maximum). The F test is for the fixed effect for time for the overall model.

Table 2: Physical and Mental Functioning at Baseline and 30, 60, and 90 Days.
that physical functioning at baseline was significantly lower than at 60 days (mean difference=-5.6; SE=1.9; 95% CI: -10.8, -2.3; p<0.05) and at 90 days (mean difference=-8.4; SE=1.7; 95% CI: -13.0, -3.8; p<0.01). For physical role functioning, a significant fixed effect was found for time (F[3,39.4]=10.4, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[72.0]=-5.5, p<0.01). Pairwise comparisons revealed that physical role functioning at baseline was marginally lower than at 30 days (mean difference=-7.5; SE=2.8; 95% CI: -15.3, 0.31; p=0.07), but significantly lower at 90 days (mean difference=-11.5; SE=2.1; 95% CI: -17.1, -5.9; p<0.001). For emotional role functioning, a significant fixed effect was found for time (F[3,29.8]=6.2, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[31.3]=-3.2, p<0.01). Pairwise comparisons revealed that emotional role functioning at baseline was significantly lower at 60 days (mean difference=-8.6; SE=2.1; 95% CI: -14.3, -2.8; p<0.01) and at 90 days (mean difference=-7.8; SE=2.4; 95% CI: -14.6, -1.0; p<0.05). For mental health, a significant fixed effect was found for time (F[3,30.3]=9.6, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[23.8]=-5.1, p<0.01). Pairwise comparisons revealed that mental health at baseline was marginally lower than at 60 days (mean difference=-5.6; SE=2.1; 95% CI: -11.6, 0.30; p=0.07), but significantly lower at 90 days (mean difference=-8.2; SE=1.6; 95% CI: -12.7, -3.6; p<0.001). For social functioning, a significant fixed effect was found for time (F[3,35.3]=8.9, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[39.7]=-5.1, p<0.01). Pairwise comparisons revealed that social functioning at baseline was marginally lower than at 60 days (mean difference=-9.2; SE=3.5; 95% CI: -19.0, 0.60; p=0.08), but significantly lower at 90 days (mean difference=-13.6; SE=2.7; 95% CI: -20.9, -6.2; p<0.01). For vitality, a significant fixed effect was found for time (F[3,29.4]=8.7, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[28.6]=-4.7, p<0.01). Pairwise comparisons revealed that vitality at baseline was significantly lower than at 30 days (mean difference=-10.3; SE=2.8; 95% CI: -18.1, -2.5; p<0.01), at 60 days (mean difference=-8.7; SE=2.7; 95% CI: -16.2, -1.2; p<0.05), and at 90 days (mean difference=-13.9; SE=3.0; 95% CI: -22.3, -5.5; p<0.01). For bodily pain, a significant fixed effect was found for time (F[3,31.2]=9.6, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[32.6]=-4.6, p<0.01). Pairwise comparisons revealed that bodily pain at baseline was significantly lower than at 30 days (mean difference=-10.8; SE=2.7; 95% CI: -18.3, -3.4; p<0.01), at 60 days (mean difference=-12.0; SE=2.6; 95% CI: -19.2, -4.7; p<0.01), and at 90 days (mean difference=-13.7; SE=3.0; 95% CI: -22.0, -5.4; p<0.01). For general health, a significant fixed effect was found for time (F[3,28.0]=9.4, p<0.01), and the parameter estimate between baseline and 90-day follow-up was also significant (t[28.6]=-3.9, p<0.01). Pairwise comparisons revealed that general health at baseline was significantly lower than at 30 days (mean difference=-9.0; SE=1.8; 95% CI: -14.0, -3.9; p<0.01) and at 90 days (mean difference=-9.1; SE=2.3; 95% CI: -15.7, -2.5; p<0.01).

Discussion

In this clinic-based study of persons wanting to lose weight, we assessed the effect of an IgG-mediated food sensitivity test, the Immuno Bloodprint, combined with a subsequent elimination diet for 90 days on measures of body composition, resting blood pressure and heart rate, and quality of life. Not only did participants lose weight, but they demonstrated improvements in their BMI, waist and hip circumferences, resting diastolic blood pressure, and all measures of quality of life according to the SF-36 from baseline to 90-day follow-up. We also noted that some anthropomorphic changes occurred within 30 and 60 days (e.g., weight, BMI, waist circumference), but the greatest differences happened at the 90-day follow-up assessment. The results of our physical measures are strengthened by the positive changes seen in our quality of life indicators utilizing the SF-36, particularly the scales of vitality, bodily pain, and general health, suggesting that not only were our participants making improvements, but that they were subjectively associating those changes with how they felt in various domains. Additionally, subjects reported a very high compliance to the diet (at least 95% average compliance) for each of the follow-up periods.

The results of our study provide useful information for persons who are interested in losing weight, but have found other attempts to be challenging. Multiple ways of losing weight are recommended in the mass media by many different organizations, e.g., DASH, the South Beach Diet, the Ornish Diet, the Mediterranean diet, Weight Watchers, Nutrisystem, gluten-free, vegetarian/vegan, and others. However, none of those plans recognizes the possibility that certain foods, even those considered as healthy, such as tomatoes or pinto beans, could be problematic for overweight individuals who are IgG-reactive to them. Thus, eliminating foods that are IgG-reactive, while replacing them with similar, non-reactive foods to ensure that nutrient deficiencies do not occur, is a novel strategy for addressing the epidemic of obesity.

While the use of IgG-mediated testing is not universally-accepted as accurate or valid in identifying foods that are reactive or “allergic” due to the occurrence of IgG antibodies in the blood of healthy individuals [13,22], others have suggested that non-IgE mechanisms are useful for individuals who may be symptomatic to certain foods [23]. Additionally, researchers in headaches and gastroenterological complaints and disorders have discovered improvements in symptoms by using IgG-mediated testing combined with a subsequent food elimination diet [18,24-28]. Furthermore, while IgE testing is the commonly-recognized method to determine food allergies [29,30], the use of IgG testing may continue to show utility, as IgG antibodies are useful for individuals who may be symptomatic to certain foods [13,22], others have suggested that non-IgE mechanisms are useful for individuals who may be symptomatic to certain foods [23]. Additionally, researchers in headaches and gastroenterological complaints and disorders have discovered improvements in symptoms by using IgG-mediated testing combined with a subsequent food elimination diet [18,24-28].
which is inherently linked to the other waves of cardiovascular disease, diabetes, cancer, and other diseases [31-33], a simple test that can be utilized by overweight persons to help them lose weight is sorely indicated. The results of our study showed that participants lost an average of almost 1 pound per week, which is just under the recommendation of what is considered safe, healthy, and potentially permanent weight loss of 1-2 pounds per week [34]. Additionally, participants lost nearly 3 inches from the waist, as opposed to just under 1.5 inches from the hip, providing support for improvements in central obesity, which is a strong risk factor for metabolic syndrome, cardiovascular disease, diabetes, and others [35-37].

In addition to the positive changes associated with body composition, our participants noted substantial subjective improvements in both physical and mental quality of life, as rated with the SF-36, one of the gold standards in this area. Thus, we surmise that the objective findings in body composition validate the subjective improvements noted by the participants, particularly in better vitality, bodily pain, and general health. Our results are consistent with other studies that have shown improvements in ratings of quality of life in parallel with weight loss [38,39]. Our findings extend prior work by showing improvements in both the mental and physical quality of life domains, whereas others typically have only noted improvements in the physical domain [40,41].

Limitations of this study include our lack of any additional biological markers of inflammation, e.g., C-reactive protein, cytokines, or growth factors, to be able to determine the possible relationship between changes in body composition to other indicators of chronic disease. The foods that were tested include those that have been linked to cardiovascular disease, obesity, cancer, and other diseases (e.g., beef and cow’s milk [42,43]), but were not eliminated from the diet if the participant was not reactive to those foods. Thus, perhaps even additional body composition and/or quality of life improvements could be made by considering the elimination of certain high-risk foods altogether regardless of IgG reactivity. Participants were not re-assessed with another IgG test at 90 days to determine consistency across the study and/or to denote any changes in response to the intervention.

The results of our study suggest that overweight or obese (according to BMI) people who want to lose weight are able to significantly improve multiple indicators of body composition, while simultaneously reporting subjective enhancements in physical and mental quality of life, by complying with a food elimination diet based on the results of IgG-mediated testing. Thus, within the spectrum of the overweight/obesity epidemic, our study represents a first attempt to show that a novel IgG-mediated Immuno Bloodprint test combined with a subsequent elimination diet may offer the opportunity for these persons to improve their dietary behaviors and subsequent health status by utilizing a tailored, individualized-specific program. Continued efforts at improving the way we intervene with overweight and obese people are critically important for reducing the personal and national burden of this epidemic in the U.S.

Acknowledgments

This study was funded by Immuno Laboratories of Ft. Lauderdale, FL. Drs. Lewis, Woolger, Rafatjah, and Konefal, and Mses. Melillo and Alonso contributed to the design of the study. Drs. Lewis, Wooliger, and Konefal, and Mses. Melillo, Alonso, Leonard, and Gonzalez and Mr. Long contributed to the writing of the article. Drs. Lewis, Rafatjah, and Sarabia and Mses. Melillo, Alonso, Jones, Leonard, Quicoli, and Gonzalez, and Messrs. Long and Tannenbaum contributed to the analysis of the data. We have no financial or personal disclosures to report regarding the conduct of this research.

References

