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Introduction
Survival analysis is commonly used in biomedical sciences to 

analyze time-to-event outcome data. The Kaplan-Meier (KM) estimator 
[1] is often considered the “golden standard” for estimating a survival 
distribution without covariates. It is a piecewise continuous function 
and can be regarded as a point estimate of the survival function at a 
given time. An alternative is the Nelson-Aalen (NA) estimator [2,3], 
which is based on the exponential function of the cumulative hazard 
function. Fleming and Harrington proved that the KM estimator 
and the NA estimator are asymptotically equivalent [4]. Anderson 
et al. [5] and Fleming and Harrington [4] derived their asymptotic 
properties using a counting process. Bohoris addressed the finding 
that the NA estimator is consistently larger than the KM estimator [6]. 
Klein, Moeschberger [7,8] and Colosimo et al. [9] showed that the NA 
estimator outperforms the KM estimator for small sample sizes.

In estimating a survival distribution with covariates, Cox proposed 
a proportional hazards model that specifies the conditional hazard 
function of the failure time for a given set of covariates [10]. The Cox 
proportional hazards (PH) model assumes that the hazard function at 
time t for a given covariate vector ( )1, , , 

T

qZ Z Z Z= …  is the product of an 
arbitrary baseline hazard function and an exponential function of the 
linear combination of the covariates. It can be written as

λ(t|Z) = λ0(t) exp(βT Z),                                                                            (1)

where λ0(t) is the baseline hazard function. The baseline hazard 
function is left unspecified, thus the Cox PH model is semiparametric.

For a random patient with covariates ( )* * *
1 , , 

T

qZ z Z Z= = … , the survival 
distribution can be estimated as eqn. (2):

*ˆ* exp( )
0

ˆ ˆ( | ) ( )
T zS t Z z S t β= = 			                  (2)

where 0
ˆ ( )S t is the estimated baseline survival function and β̂  is the 

regression coefficients that can be estimated using the partial likelihood 
without specifying the baseline hazard function [10,11].

To estimate the baseline survival function S0(t), the Breslow 
estimator [12] or the Kalbfleisch Prentice (KP) estimator [13,14] can 
be used. The Breslow estimator uses the profile likelihood approach by 
extending the NA estimator. The KP estimator uses the discrete failure 
time to approach a continuous function, which is analogous to the 
KM estimator. For time-to-event data, it is desirable for the estimated 
survival probability to reach zero if the last observation is an event. 
Due to the exponential part of the Breslow estimator, the estimates 
will always be positive. The KP estimator will reach zero if the last 
observation is an event, but it requires more complex computations.

More asymptotic properties of the Breslow estimator have been 
studied than that of the KP estimator. Tsiatis [15] and Anderson et 
al. [5] derived the asymptotic distribution of the Breslow estimator. 
Without considering covariates or the Cox PH model, Huang and 
Strawderman established new formulas for the bias and the mean 
squared error (MSE) of the Breslow estimator using the Itο̂  stochastic 
integration formula for semimartingales [16]. When the covariates are 
accounted for by the Cox PH model, the relative performance of the 
Breslow estimator and the KP estimator is not clear. More empirical 
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Abstract
When analyzing time-to-event data in a non-parametric setting without considering covariates, the Kaplan-Meier 

estimator is widely used to estimate the survival function. When considering covariates, the Cox proportional hazards 
model is widely used to account for covariates effects. In this setting, for the baseline survival function, the most 
commonly used approach is the Breslow method, which estimates the baseline survival function as an exponential 
function of the cumulative baseline hazard function. However, an unnatural and undesirable feature of the Breslow es 
timator is that, its estimated survival probability will never reaches zero even if the last observation is an event. In this 
article, we consider an less commonly used alternative, the Kalbfleisch Prentice estimator for the baseline survival 
function. It is the counterpart of the Kaplan-Meier estimator in a setting with covariates, and thus similarly as the Kaplan 
Meier estimator, it will reach zero if the last observation is an event. To evaluate the usefulness of the Kalbfleisch Prentice 
estimator and its relative performance comparing with the Breslow estimator, we conduct simulation studies across a 
range of conditions by varying the true survival time distribution, sample size, censoring rate and covariate values. We 
compare the performance of the two estimators regarding bias, mean squared error and relative mean squared error. 
In most situations in our study, the Kalbfleisch Prentice estimator results in less bias and smaller mean squared error 
than the Breslow estimator. Their differences are especially clear at the tail of the distribution. The implications of such 
differences in applications are discussed. We advocate the use of Kalbfleisch Prentice estimator in practice, and further 
research on its properties.
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results to compare the relative performance of these estimators are still 
necessary.

In this article, we focus on the empirical comparison of the Breslow 
estimator and the KP estimator regrading bias, MSE and relative MSE 
(RMSE). Section 2 reviews the Breslow estimator and the KP estimator. 
Section 3 presents a comprehensive simulation study to examine the 
relative performance of these estimators under settings of various 
baseline survival functions, sample sizes, censoring rates and covariate 
values settings.

Method
In this section, we review the methodology of the Breslow estimator 

and the KP estimator for survival functions. For each patient i, let Ti 
denote the time to the event of interest and Ci denote the censoring 
time, i = 1, ..., n. Then the observed data are Xi = min (Ti, Ci) and the 
censoring status is [ ] : 1i i i iI T C∆ = ≤ ∆ =  if an event was observed for the 
ith patient; ∆i = 0 if patient i was censored. We use the upper case to 
denote random variables and the lower case to denote realized values.

The Breslow estimator

Let ( )jx be the set of patients who are still at risk of experiencing 
the event at time xj. For patient i, whose covariate vector is

( )1, , 
T

i i iqz z z= … , Breslow [12] proposed a nonparametric maximum 

likelihood estimator for the cumulative baseline hazard function
0,

ˆ (t)BRΛ , which in the situation of no ties between the observed event 
times can be written as:

( )
( ) ( )0, 

:

ˆ
exp ˆ

j
j

j
BR T

j x t kk x

t
z

δ

β≤
∈

 
 Λ =  
  

∑
∑ 

Then the Breslow estimator for the baseline survival function is:

0, 0,
ˆ ˆ( ) exp{ ( )}BR BRS t t= −Λ

Thus, the Breslow survival function estimator for a subject with 
covariate vector Z = z∗ can be derived as:

( ) ( ) ( ) ( ) ( )
* *

0, 
exp ˆ ˆ ˆexp*

0, 
ˆ ˆ|

T T
BR

z z t
BR BRS t Z z S t e

β β− Λ = = = 

The Kalbfleisch-Prentice estimator

The later proposed Kalbfleisch Prentice (KP) estimator [13,14] 
for survival functions uses the discrete failure time to approach a 
continuous function. Let ( )jx be the set of patients who failed at time 
xj. For distinct failure time , 1, ,jx j m= …

x1< x2< ...< xm.

Let αj denote the conditional probability of surviving at time xj for 
a subject at baseline. The baseline survival function can be estimated as

:

ˆ ˆ( ) = j

j
0,KP j

j x t
S t δα

≤
∏

This leads to the likelihood function L:

( )

( )( )
( ) ( )

( )* *exp e ˆxˆ p

1

1
T T

j j j

m
z z

j j
j l x k x x

L β βα α
= ∈ ∈ −

= −∏ ∏ ∏
  

Take the estimated ˆT Tβ β=  from the partial likelihood and 
maximize the likelihood function L with regard to jα , which is the 
solution of the equation

( )

( )
( )( ) ( )

( )*exp ˆ

exp  
exp

1

ˆ
ˆ

T
l

j j

T
l T

kz
l D x k x

j

z
z

β

β
β

α∈ ∈

=
−

∑ ∑


where zj is the set of covariates for a subject who died at xj. Assuming 
no ties, the solution ˆ jα is

( )
( ) ( )

( )e ˆxp
ˆ

ˆ
ˆ

exp
1

exp

T
j

j

z
T

j
j T

kk x

z

z

β

β
α

β

−

∈

 
 = − 
  ∑ 

Accordingly, the KP estimated survival function for a subject with 
covariates * Z z= is:

* *ˆ ˆ* exp( ) exp( )
0,

:

ˆ ˆ ˆ( | ) [ ( )] [ ]
T T

j

z j z
KP KP

j x t
S t Z z S t β δ βα

≤
= = = ∏

Simulations
In this section, we present four scenarios under which to evaluate 

the relative performance of the Breslow estimator and the KP estimator. 
We consider four baseline survival distributions: uniform, exponential, 
and two Weibull distributions. For the Weibull distributions, we 
include both cases of increasing and decreasing hazard functions. The 
baseline survival function of the Weibull distribution is given as:

( ) ( ){ }  /S t exp t b a= − , t > 0,

where a is the shape parameter and b is the scale parameter. The 
baseline survival plots and hazard functions of all four scenarios are 
presented in Figure 1.

The survival time is generated using the Cox PH model in equation 
(1) with one covariate z, z ∼ Unif (0, 1), and the regression coefficient β 
is set to be 0.2. The censoring time C is generated from either a uniform 
distribution or a exponential distribution. The distribution of censoring 
time C is deliberately calibrated to obtain the desired censoring rate 
r. For each example baseline survival distribution, we vary the sample 
size, censoring rate and covariate values, and compare the performance 
according to the bias, MSE and RMSE. Let *(  | ) S t Z z= denote the 
true survival function for a subject with covariate vector *Z z= and 
G denote the number of simulations. The bias and MSE of the Breslow 
estimators are calculated via simulation as follows:

* *
( z*, ) ,

1

1 ˆ ( | ) ( | )
G

Z BR BR m
m

Bias S t Z z S t Z z
G=

=

= = − =∑
* * 2

( z*, ) ,
1

1 ˆ[ ( | ) ( | )]
G

Z BR BR m
m

MSE S t Z z S t Z z
G=

=

= = − =∑
The bias and MSE of the KP survival function estimator for the 

given covariate vector Z = z* can be computed similarly.

The RMSE is calculated as

( z*, )

( z*, )

Z BR

Z KP

MSE
RMSE

MSE
=

=

=

The simulation settings used to study the effect of sample size, the 
censoring rate and covariate values are listed in Table 1. For the effect of 
the sample size, we let n = 20, 50, 100 and keep r = 25% and z∗ = 5. For 
the effect of the censoring rate r, we generate data without censoring (r 
= 0) and calibrate the censoring time distribution to generate data with 
censoring rates r = 25%, 45%. For the effect of the covariate value, we 
assume z∗ = 0, 5, 10 and fix n = 50 and r = 25%. Under each scenario, 
5000 simulations are generated.

Results
Uniform distribution

Assuming a uniform distribution (0, 10) for the baseline survival 
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function, the survival probability should reach 0 when time t equals 
10. For this example, the magnitude of the bias decreases as the sample 
size n increases (Figure 2). The Breslow estimator always overestimates 
the survival probabilities, particularly for small sample sizes: the 
maximum bias is approximately 0.05 for n = 20, 0.2 for n = 50 and 0.01 
for n = 100. The KP estimator may overestimate or underestimate the 
survival probabilities. In particular, for n = 20, the KP estimates are 
positively biased before t = 2, then become negatively biased until t 
= 6, and are positively biased again until t = 10. The magnitude of the 
bias for the KP estimator is much smaller than that for the Breslow 
estimator. For the censoring rate r, the bias increases dramatically as 
r increases. The patterns are similar to the effect of the sample size. 
For the covariate value z, the bias decreases as z increases. For z = 0, 
the bias of the Breslow estimates increases monotonically and reaches 
approximately 0.22 at t = 10 (this part of the plot is truncated to keep 
the same range for all the y-axes). For z = 5 and 10, the bias is less 
than 0.05. The Breslow estimator is still always positively biased, while 
the KP estimator underestimates the survival probabilities until t = 8.5, 
then overestimates them until t = 10. In all situations, the KP estimator 
has smaller bias than the Breslow estimator.

Figure 3 presents the RMSE of the Breslow estimates compared to 
the KP estimates. For sample sizes n = 20, 50 and 100, the RMSE stays 
slightly below 1 until approximately t = 4, then substantially exceeds 1 
and keeps increasing as time t increases. That is to say, compared to the 
KP estimator, the Breslow estimator has almost identical MSE for small 
values of t, but has substantially larger MSE for large values of t. Their 
differences increase when the sample size n decreases.

For the effect of the censoring rate r, the RMSE stays close to 1 
before t = 4, and then increases dramatically. In particular, for r = 0, 
the RMSE keeps increasing as the MSE of the KP estimator reaches 
0 at the tail. This is because in the situation without censoring, when 
S(t) = 0 for t ≥ 10, all the events happen at time t ≤ 10. Therefore,

ˆ( ( )) = 0for 10KPMSE S t t ≥ .

For the covariate value z = 0, the RMSE starts slightly below 1, then 
decreases to about 0.7 until it reaches t = 7.5, then keeps increasing and 
reaches 2.3 at t = 10. For covariate values z = 5 and 10, the RMSE is 
always greater than 0.98 and exceeds 2 at t = 10.

Summarizing all the scenarios, the Breslow estimator has 
substantially larger MSE than the KP estimator when t is relatively 
large. When t is small, the differences between the MSE for these 
estimators are minimal.

Exponential distribution

Assuming the true baseline survival time follows an exponential 
distribution with the rate equal to 0.3, the baseline survival function S(t) 
at the end of the time line, t = 10, is 0.091. The bias plots for the effect 
of sample size n, censoring rate r and covariate values z are presented 
in Figure 4. They display a pattern that is very similar to that obtained 
from the setting of the uniform baseline survival function. In general, 
bias decreases as n and z increase, or r decreases. The magnitude of the 
bias for the Breslow estimator is almost always larger than that for the 
KP estimator.

The RMSE for the exponential baseline survival function is shown 
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(a) Survival plots.
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(b) Hazard functions.

Figure 1: The survival plots and hazard functions of the four baseline survival distributions. (a) Survival plots, (b) Hazard functions.

Table 1: Simulation settings.

Variable of interest Fixed parameters
Sample size n = 20, 50, 100 r = 25%, z∗ = 5

Censoring rate r = 0, 25%, 45% n = 50, z∗ = 5
Covariate value z = 0, 5, 10 n = 50, r = 25%
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Figure 2: Bias for survival estimates of a uniform baseline survival distribution (0, 10).
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Figure 3: RMSE for survival estimate of a uniform baseline survival distribution over interval (0, 10).

in Figure 5. For sample size n = 20, 50 or 100, the RMSE starts slightly 
below 1, then increases quickly and at t = 10 reaches the maximum 
value, which is 2.15 for n = 20, 1.9 for n = 50, and 1.8 for n = 100. 
For the scenario of r = 0, the RMSE approaches infinity as t increases. 

This is because at t = 10, the KP estimate S(t = 10) is 0, and thus the 
MSEKP (t = 10) is also 0. For r = 0.45, the RMSE starts near 1, then 
keeps increasing and becomes steady at 1.5 after t = 4. For the effect of 
covariate values z, the RMSE at baseline where z = 0 is below 1 until t = 
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6.2, with its minimum value approximately 0.76 at t = 4.2, then keeps 
increasing and reaches 1.75 at t = 10. Whereas for z = 5 and 10, the 
RMSE keeps increasing and reaches near 2 at t = 10. In most scenarios, 
the RMSE exceeds 1. This implies that the KP estimator has smaller 

MSE compared to the Breslow estimator.

Two weibull distributions

For the Weibull distribution as the true baseline survival function, 
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Figure 4: Bias for survival estimates of the exponential baseline survival distribution with λ = 0.3.
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Figure 5: RMSE for survival estimates of an exponential baseline survival distribution with λ = 0.3.
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we consider two cases: a Weibull distribution with a shape parameter 
(a) equal to 2 and a scale parameter (b) equal to 1, and another 
Weibull distribution with a = b = 0.8. The Weibull distribution with 
a = 2 corresponds to an increasing hazard, and that with a = 0.8 
corresponds to a decreasing hazard. For Weibull(2, 1), the true baseline 
survival function becomes sufficiently close to 0 (0.0001) at t = 3. For 
Weibull(0.8, 0.8), the true baseline survival function becomes close to 
0 (0.0018) at t = 8.

The bias plots for Weibull(2, 1) are presented in Figure 6a. They 
display patterns similar to those for previous scenarios in smaller 

magnitude. For Weibull(0.8, 0.8), the bias decreases as n or z increases, 
or as r increases (Figure 6b). For all scenarios under Weibull(0.8, 0.8), 
the bias reaches a plateau after t = 2. Generally, the magnitude of the 
Breslow estimator is larger than that of the KP estimator.

The RMSEs for Weibull(2,1) and Weibull(0.8, 0.8) are presented 
in Figure 7a and 7b, respectively. For Weibull(2, 1), the pattern of the 
RMSE is similar to the one with Uniform(0, 10) but in larger magnitude 
for RMSE values exceeding 1. For Weibull(0.8, 0.8), in most scenarios 
except for r = 0 and z = 0, the RMSE starts right below 1, then increases 
rapidly and reaches a plateau before t = 2. For the scenario of r = 0, the 
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Figure 6: Bias for survival estimates of two Weibull distributions: (a) Bias for survival estimates of a Weibull baseline survival distribution with a = 2, b = 1; (b) Bias for 
survival estimates of a Weibull baseline survival distribution with a = b = 0.8.
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(a) RMSE for survival estimates of a Weibull baseline
survival distribution with a = 2 , b = 1.
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(b) RMSE for survival estimates of a Weibull baseline
survival distribution with a = b = 0 .8.

Figure 7: RMSE for survival estimates of two Weibull distributions: (a) RMSE for survival estimates of a Weibull baseline survival distribution with a = 2, b = 1; (b) RMSE 
for survival estimates of a Weibull baseline survival distribution with a = b = 0.8.
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RMSE increases dramatically to a substantially larger value as the Sˆ 
for the KP estimator approaches 0. For the z = 0 scenario, the RMSE 
stays below 1 until t = 2, then keeps increasing and stays at 1.6 at t = 5; 
whereas for z = 5 or 10, the RMSE monotonically increases and stays 
around 1.75 since t = 2. The RMSE results show that the MSE of the 
Breslow estimator is almost always larger than that of the KP estimator, 
except when z = 0.

Discussion
In this article, we compare the Breslow estimator and the KP 

estimator for survival functions. In most situations in our study, the 
KP estimator has smaller bias and MSE compared to the Breslow 
estimator. The bias, MSE and RMSE are influenced by the sample size, 
censoring rate and covariate values.

For survival analysis involving time-to-event data, it is desirable 
for the estimated survival probability to be zero at the tail of the 
distribution if the last observation is an event. The KP estimator 
satisfies this property, but the Breslow estimator does not. The Breslow 
estimator is in the form of an exponential function of the cumulative 
baseline hazards, which will always be strictly positive. On the other 
hand, the KP estimator is formed as a product-limit, similar to the 
KM estimator. It uses the discrete failure time approach to account for 
covariate effects through the Cox PH model. It will reach zero if the last 
observation is an event.

When the survival plot has a plateau at the tail, we may consider 
using the mixture cure model [17] for long-term survivors. The 
mixture cure model assumes the population is composed of a cured 
proportion and an uncured proportion. For the uncured proportion, 
the survival function should be zero when time goes to infinity. When 
checking the goodness-of-fit for cure models, it is important to have 
an accurate estimate of the survival probability at the tail. The Breslow 
estimator may not be a good choice as it will never reach zero due 
to its exponential form. Many researchers of mixture cure models 
experience convergence problems when they use the Breslow estimator 
for the survival function of the uncured subpopulation. A commonly 
used approach to fix this problem is to assign an arbitrarily large value 
on the last jump size at the tail of the cumulative hazard function so 
that the Breslow estimator will be sufficiently close to zero [18-20]. 
However, such a change increases the bias for estimates [21]. Viewing 
this problem, a solution may be to use the KP estimator to replace 
the Breslow estimator in the fitting of the mixture cure models. Our 
preliminary simulation studies show that the KP estimator provides 
a more accurate estimation of cure rates than the Breslow estimator. 
These results may be used to check the goodness-of-fit of cure rate 
models [22,23], which warrants further research.
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