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Abstract
Endocannabinoids, and their respective receptors, are involved in a host of cellular regulatory activities. In part, 
some of these mediated effects occur by way of stimulating constitutive nitric oxide release. This occurs in 
endothelia, certain white blood cells, microglia, and in similar invertebrate tissues, demonstrating that this is a 
conserved chemical messenger system. This endocannabinoid chemical messenger system, coupled to constitutive 
nitric oxide release, also appears to exert regulatory effects on mitochondrial energy associated processes, further 
substantiating its primordial history. In this regard, it appears to offer some beneficial actions in the occurrence 
of reperfusion injury and stroke. The mechanism envisioned is one initiated via a hypoxic event, which does not 
restore normalcy, then progresses to a pro-inflammatory state, and the resultant chronic condition manifests itself 
in a specific disorder. This fits nicely into a vascular-associated origin for Alzheimer’s Disease, whereby the pro-
inflammatory state encompasses vessels that have endothelial gaps, providing for a compromised blood brain 
barrier, beta amyloid deposition, and enhanced white blood cell trafficking. In time, due to the physical progression 
of the events, Alzheimer’s Disease occurs. 
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Constitutive Nitric Oxide (NO)
Constitutive nitric oxide synthase (cNOS) is responsible for both 

tonic and phasic production of nitric oxide (NO) which is released via 
physiological stimuli [1]. The enhanced cNOS-mediated release of NO 
can exert profound physiological actions, well after NO returns to its 
tonal level [2]. For example, endothelial cells exposed to an appropriate 
chemical messenger may take hours to change conformation [2], 
demonstrating that these enhanced NO levels are physiologically 
important. 

Inhibitory NOS is also induced by various signal molecules, e.g., 
pro-inflammatory cytokines [3-5], after a 3-4 h delay and its release 
remains high for 24-48 hours [4,5]. Therefore, inducible NOS (iNOS) 
NO is in the environment for a much longer period of time, suggesting 
that NO is always present and that its levels can change quickly 
for a short period of time, or induced, so that it is present at high 
concentrations, for a longer time. These different processes imply either 
a different function of NO, or a role that requires NO to be progressively 
increased to exert its action, or a combination of the two. We surmise 
that this low level of NO (nM range) provides an organism with a major 
pathway that functions to dampen micro-environmental “noise” which 
would otherwise nonspecifically and inappropriately activate immune, 
endothelial and neural cells [6]. NO may control the threshold for 
activation of these cells. For example, when excitatory signals, i.e., 
lipopolysaccharide, are present at detectable levels, the tonal inhibition 
due to NO is overcome and activation occurs. Thus, the activation 
mechanism really represents a disinhibition process [6]. Activation, 
representing the overcoming of the NO inhibitory influence, occurs by 
tipping the balance between tonal NO and the levels of excitatory signal 
molecules, since these also may be constitutively expressed. Taken 
together, the disinhibition phenomenon suggests that these cells are 
always “on”. This, in itself, represents an important survival strategy, 
since these cells are constantly ready to protect their respective systems, 
requiring only one step for activation, that is, disinhibition. 

Tonal Nitric Oxide
We have measured a baseline level of NO, using an amperometric 

probe, in endothelial cells, monocytes, granulocytes and invertebrate 
ganglia and immunocytes [2]. Based on this observation, it is safe to 
conclude that NO may be produced in these tissues at very low levels. 
Based on the information presented in the earlier sections of this review, 
we believe that this tonal NO is physiologically significant. We speculate 
that tonal NO tends to diminish the natural excitatory nature of these cells, 
and in so doing, it provides for a threshold level of stimulation that needs 
to be overcome. Once a threshold level of stimulation occurs, it simply 
“tips” the balance of signal molecule strength in favor of excitation. In 
other words, excitation occurs by disinhibition. 

In blood vessels, i.e., endothelia, obtained from patients during 
coronary artery bypass surgery, non-insulin dependent diabetics do 
not exhibit a tonal level of NO [7]. Generally, in patients with non-
insulin-dependent diabetes mellitus, vascular disease causes disability 
and death [8]. A number of authors, including us, have attributed 
vascular disease, in part, to alterations associated with endothelium-
derived NO. Some have speculated this also may be due to enhanced 
free radical generation [9]. Indeed, decreases in the basal level of 
NO may also contribute to enhanced platelet function, as well as 
neuropathies [10,11]. Taken together, it would appear that tonal NO is 
quite important in limiting the degree of excitation of nervous, immune 
and vascular tissues. Furthermore, this tonal NO may manifest itself 
via effects on the local expression of adhesion via NF-κB-mediated 
processes. Clearly, other cascading mechanisms may also be involved 
[12]. In all likelihood, estrogen may exert its beneficial vascular 
protective actions via these processes as well, since it also releases cNOS 
derived endothelial NO [13,14].
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of NO initiates cell rounding and resembles those of opiate alkaloids. 
These signaling systems utilize the same effector system, i.e., NO release, 
but by separate receptors [20,40]. Additionally, anandamide signaling 
has been demonstrated in rat blood vessels where it can also cause 
vasodilation [43]. In this report, CB1, an endocannabinoid receptor, 
receptor material and anandamide were also found, indicating that this 
signaling may involve autovascular regulation as well. 

Tetrahydrocannabinol (THC) inhibits macrophage cell contact-
dependent cytolysis of tumor cells [42]. THC also appears to alter 
antigen processing [43] and the expression of select proteins whose 
induction is associated with macrophage activation, as well as the 
expression of TNF [44,45]. THC was found to increase the bioactivity 
of IL-1 in cultures of mouse resident LPS-stimulated peritoneal 
macrophages [46]. Incubating P388D1 macrophage cell cultures 
with THC results in a dose-dependent inhibition of cell propagation, 
DNA synthesis and phagocytosis [47]. In earlier reports, THC was 
found to inhibit human peripheral blood macrophage spreading and 
phagocytosis [48-51].

The inhibition of cell spreading [48,49] is in agreement with 
observations made by Stefano, which demonstrate [20,22] that 
anandamide receptor coupling to NO may be the mechanism initiating 
this cell rounding [2,16]. Thus, naturally occurring cannabinoids and 
opiate alkaloids may utilize the same NO-producing effector system. 

Specifically, anandamide effector processes are coupled to NO 
release in human endothelial cells [5,8,20]. We demonstrated that 
cNOS derived NO release regulated iNOS activity and concluded 
that endogenous signaling molecules may use NO to directly inhibit 
adenylate cyclase activity [5] . Our results also demonstrate that cNOS 
derived NO regulates iNOS expression [5]. 

Clinical Observations on THC, Mitochondria and 
Vascular Tissues

In light of the molecular and cellular studies cited, on a clinical 
level there are vulnerabilities to addiction associated with cannabis. 
Simultaneously, it has been shown to have great beneficial value with 
several diseases [52]. Cancer, pain, neurodegenerative disorders, 
Alzheimer’s Disease and psychiatric disorders are some of the diseases 
that have been or have the potential to be treated with cannabinoids. 
THC, the psychoactive component of cannabis, produces a countless 
amount of pharmacological effects in animals and humans [53]. 
THC exhibits serious negative outcomes, as well [54]. In regard to 
mitochondrial actions, tests on isolated rat brain mitochondria showed 
mitochondrial dysfunction, as well as oxidative stress [54]. Importantly, 
heightened hydrogen peroxide (H2O2) production also was found. This 
observation is supported by others [55]. THC may induce multifocal 
intracranial arterial vasoconstriction [55], which may damage neurons 
via induced hypoxia [56]. Since these processes are major occurrences 
during stroke, the indication that THC may provoke an individual’s 
susceptibility to it via creating circulatory pathologies, appears novel. 

Validating the earlier empirical studies just noted, are the works by 
Aliev (2014, 2013), which also note vascular lesions and mitochondrial 
dysfunction, as components of the pathogenesis of Alzheimer’s Disease 
[57,58]. A key component of their hypothesis is the involvement of NO 
as a contributing factor via mitochondrial targeting [59]. Nakamura 
and colleagues make an additional contribution to this pathogenesis by 
involving mitochondrial dysfunction in neurons and their processes, 
induced by abnormal protein folding presumably caused by high 
NO levels, suggesting iNOS stimulation [60]. Furthermore, Khan 

Cell Shape
NO stimulated cell conformational changes extend to human 

monocytes and granulocytes, human endothelial cells and invertebrate 
immunocytes and microglia [2,15-21].Various endogenous signaling 
molecules, whose receptors are coupled to cNOS, can bring about 
the relatively rapid change of shape. For example, both anandamide, 
an endogenous endocannabinoid, and morphine exhibit this ability 
in human and invertebrate immunocytes, microglia and human 
endothelial cells [2,16,18,22]. Furthermore, once the cNOS derived 
NO down regulating activity (causing cells to be round and inactive) 
wears off, the cells, for a short period of time, exhibit a simple rebound 
effect characterized by hyperactivity [21]. This suggests, that NO, in 
a counter-intuitive process, can also activate cells. Cell activation, as 
noted by cell shape changes, has been reported by Goligorsky and 
colleagues for endothelial cells after a prolonged incubation period 
[23-25].

Besides the intercellular influence of NO on cell shape changes, NO 
has been shown to act within the cell to initiate regional shape changes, 
i.e., to cause cells to extend or retract portions of their cytoplasm [23-
25]. We can speculate that these intracellular effects on cell shape may 
be the basis for cellular communication within the median eminence 
and provide a mechanism for exocytosis into capillary beds [13,26].

Molecular Mechanisms 
NO inhibits endothelial cell-leukocyte activation [27-29]. The 

mechanism of NO action appears to be at the level of adhesion 
molecules. Sodium nitroprusside, a potent NO donor, inhibits the 
adhesion of gel-filtrated thrombin stimulated platelets and leukocytes, 
which is mediated by selectin-P [30]. The beta 2-integrin CD18 and 
the endothelial cell adhesion molecule ICAM-1 increase the surface 
adhesion of neutrophils to endothelial cells; this increased adhesion 
can be blocked by exposure to the NO-donor, N-nitro-Larginine 
methyl ester (L-NAME), or to monoclonal antibodies directed against 
these molecules [31] NO donors also decreased polymorphonuclear 
leukocyte interactions in the microvasculature of post-ischemic tissue 
[32]. In this study, rolling and firm adhesion (adherence) of leukocytes 
and shear rate were monitored in cat mesenteric venules. The study 
suggested that NO donors may provide protection from tissue injury by 
preventing immunocyte adhesion. Our previous reports also support 
this hypothesis [17,18,33-38].

DeCaterina and colleagues [39] found that exposing IL-1 
stimulated human saphenous vein endothelial cells to NO donors 
resulted in a concentration-dependent inhibition of VCAM-1 
expression and reduced monocyte adhesion to endothelial monolayers. 
The same phenomenon was observed after stimulation by IL-
1, IL-1, IL-4, tumor necrosis factor (TNF alpha), or bacterial 
lipopolysaccharide (LPS) [39]. Furthermore, NO also decreased the 
endothelial expression of E-selectin and secretable IL-6 and IL-8. NO 
probably represses VCAM-1 gene transcription by inhibiting NF-
kappa B [39]. These authors propose that the effect of NO on cytokine 
synthesis may contribute, in part, to its anti-atherogenic and anti-
inflammatory properties. From this study alone, one may conclude that 
NO can have potent and widespread anti-inflammatory actions.

Cannabinoids
In a study, our group demonstrated stereo-selective binding sites for 

anandamide in invertebrate immunocytes and microglia [20,40]. This 
binding site is coupled to NO release, both in invertebrate tissues and 
in human monocytes. Interestingly, the cannabinoid stimulated release 
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the cannabinoids can directly lessen oxidative metabolism of tissue in 
isolated mitochondria [71]. Indeed, over the short term this may be the 
basis for endocannabinoids’ reported beneficial actions, e.g., in stroke, 
decreasing energy processes in trauma to lessen a reactive oxygen 
species (ROS) presence. 

Furthermore, detailed epidemiological, biochemical and 
physiological studies have demonstrated that rheumatoid arthritis, 
osteoarthritis, atherosclerosis, diabetes type 2, and Alzheimer’s Disease, 
to name a few, are strongly associated with cardiovascular diseases in the 
general population, thereby establishing a clear functional connection 
between metabolic rundown encountered in Type II diabetics and 
the etiology of these disorders [72-86]. Their interrelationship also 
manifests itself in the phenomenon of co-morbidities [82,86,87]. 
Importantly, in these and other disorders, the central involvement of 
the vasculature is of singular significance because it supplies oxygen 
to the various tissues whose mitochondria require it instantaneously 
[77,88,89].

Conclusion
In attempting to summarize this information, an Alzheimer’s 

Disease hypothesis would be in order. In this scenario a minor event 
may occur in a “brain” blood vessel (e.g., lipid, ROS, trauma, etc.) 
initiating a micro environmental hypoxic state, which would alter 
mitochondrial activity. In this vascular hypothesis [77,90], under 
normal circumstances this event would be corrected, however, 
occurring in an abnormal micro-environment, it would progress 
in outcome. The induced hypoxia state would alter mitochondrial 
processes, which depend on an immediate oxygen supply, and cause 
it to revert to another energy pathway favoring aerobic glycolysis, 
producing less ATP [89,90] initiating a chronic proinflammatory 
state [92]. This mitochondrial induced phenomenon would alter 
endothelial cell shape, since endothelial NO production would also be 
compromised, causing gaps in the vascular lining [75,88]. These gaps 
would allow immune cells to move in and out of the brain in greater 
numbers and cause the production of signaling molecules that are 
immune-stimulatory in nature. It would also allow for the continued 
build-up of beta amyloid-, tau -proteins and other molecules that 
are regarded as the hallmark of Alzheimer’s disease. As this process 
continues, it spreads due to the proximity of hypoxic environments 
and compromised blood flow, increasing its frequency of presence over 
normal age-matched brains. In this regard, hypo-perfusion of the brain 
and a lack of NO, both influencers of mitochondrial regulation, do 
induce an Alzheimer’s Disease-like vasculature [94,95]. Furthermore, 
the various co-morbidities associated with Alzheimer’s Disease bring 
into consideration the many phenomena that suggest dysfunctional 
mitochondria are present. 

The presence of a cannabinoid chemical messenger system, 
liberating NO from endothelial cells, brings into question an early 
cannabinoid involvement/failure, given its dependence on fatty acid 
mitochondrial driven metabolism. Again, its association with this 
disorder is also documented. Diverse signaling compounds use cNOS, 
thus amplifying tonal NO levels. Given the subtle nature of tonal NO’s 
presence, we surmise that, in its absence, it would be hard to document 
its significance over the short term. However, over the long term 
we already may be observing its effects in progressively debilitating 
conditions such as diabetes type 2 [96]. In other chronic conditions 
involving inflammatory events, such as AIDS-associated neuropathies, 
we may also be observing conditions when tonal NO influences cannot 
be felt over the long term, leading to enhanced tissue damage and brain 
penetration. In this regard, we feel the current review opens up another 

and colleagues (2012) again stress the significance of mitochondrial 
dysfunction and oxidative stress as causative factors in Alzheimer’s 
Disease, which can be alleviated, to a degree, by thymoquinone [61]. 
Even in a rodent model, as noted earlier, blood flow appears to be a 
factor in Alzheimer’s Disease initiation, involving the above cellular 
processes [62]. 

Sustained use of marijuana has suggested an association with 
problems such as cognitive dysfunction, cardiovascular disorders and 
restricted blood flow causing cerebral abnormalities [63]. Testing on 
serum protein levels proved that marijuana does, in fact, increase levels 
of apoliproprotein (apo) C-III, a cardiovascular risk factor, putting 
patients at risk for the above-mentioned complications. In part, 
this may also explain the association of THC with negative vascular 
outcomes [64,65]. Additionally, chronic bronchitis is associated with 
THC use, and in this process, it damages mitochondrial function and 
cellular energetics. THC appears to induce the uncoupling of electron 
transport [65]. Interestingly, this mitochondrial dysfunction lasts for 
hours, suggesting profound actions of this compound. In this regard, 
in culture, we have demonstrated that vascular endothelial cells can 
undergo prolonged cell shape changes lasting for hours after a short 
exposure to anandamide, suggesting many cannabis actions are not 
immediate [2]. 

Consistent marijuana smokers have shown a good amount of 
irregularities in lung function [66]. THC exposure caused mitochondrial 
injury in epithelial lung cells and in the cell line, A549. In conclusion, 
it was found that both CB2R-dependent and independent properties 
facilitated by THC altered the airway epithelial cells. Human lung 
cancer cells, viewed over time, showed that three different types of 
cannabinoids: anandamide, THC and HU210, all caused alterations that 
were typical of cell death, e.g., apoptosis [67]. This also reduced oxygen 
intake within rat heart mitochondria. Therefore, without cannabinoid 
receptors, these three ligands all produce a change in mitochondrial 
function. Important cellular functions, such as energy regulation 
and removal of unneeded cells, are changed by the endocannabinoid 
anandamide in mitochondria-dependent signal transduction [68]. 
Results showed mitochondrial swelling and reductions of calcium 
sensitivity following anandamide exposure, which suggests that the 
anandamide changes the physiology of mitochondria.

Additionally, cannabinoids appear to be important mediators in 
the pathophysiology of inflammatory diseases, such as atherosclerosis 
[69]. They also lessen the ischemic injury after acute cardiovascular 
events. The properties of cannabinoids are characteristically attributed 
to the activation of the two major cannabinoid receptors, CB1 and 
CB2. CB1 receptor stimulation has been revealed to directly diminish 
atherosclerotic plaque inflammation while CB2 produces protective 
effects against acute post stroke inflammation. In this regard, we’ve 
demonstrated that both receptors can be coupled to cNOS stimulated 
NO release in human endothelia cells [20,27,38,41]. These reports 
demonstrate the intimate association of cannabinoid signaling and 
vascular regulation. 

Oxygen consumption and oxidative phosphorylation constitutes 
the energy process needed for sodium chloride (NaCl) reabsorption in 
the thick ascending limb the loop of Henle [70] Through the activation 
of cannabinoid receptors CB-1 and -2, Na transport in other cells is 
suppressed by anandamide. Since NO hinders transport and the CB1 
receptors are associated with NOS, the role of NO was assessed. The 
results of these tests indicated that anandamide does, in fact, hinder 
Na transport via its associated oxygen consumption through the 
stimulation of CB1 receptors and NOS. These findings indicate that 
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area in NO research, long-term tonal NO release and its biomedical 
significance, and the potential involvement of endocannabinoids, as 
local chemical messengers, that may be among the first intercellular 
communication systems to fail, probably at the mitochondrial level.
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