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Abstract

MicroRNAs (miRNAs) modulate gene expression at post-transcriptional level, while their aberrant presence in
circulation correlates with the most common human disorders such as cancer, neuro-degenerative and immune-related
diseases. Currently, the pre-concentration of such important bio-markers present at low concentrations in biological
fluids, which would make their identification and quantification easier, remains a challenging issue for biosensor-based
non-invasive analyses. This paper describes a new nanostructure-based polymeric platform for enhancing adsorption
capability of microRNAs, such as the cancer-associated miRNA-21. In this purification strategy, a nano-hole pattern was
manufactured by Replica Molding (REM) and fabricated on Polydimethylsiloxane (PDMS) large-areas. Interestingly, the
microRNAs adsorption is resulted favoured by this proper topography. In planning to concentrate the patient’'s miRNAs
used as biomarkers, PDMS surfaces with nanostructures were not further coated with any adhesive molecules to
prevent forced surface-biomolecule adhesive regions and evaluate the mere influence of the surface topography and
the ionic microenvironment. Both the nanopattern and the solution ionic strength promote adsorption of miRNAs by a
sensitive and efficient method, which do not need probe immobilization, enzymatic reaction or further treatments. These
studies revealed a two-fold higher fluorescent signal after solid-phase purification protocol compared to standard PDMS
obtained by spin-coating. While this paper focuses on nanostructure-miRNA adsorption, the general strategy of trapping
miRNAs on nano-hole patterns should be broadly applicable for purification of other miRNAs through microfluidic
biosensors and should have basic as well as clinical research applications.

L

useful platform for biosensor and biomedical applications [20,23-25].
Particularly, the attractiveness of such polymer lies in the fact that its
chemical and physical properties and also the surface topography can
be modulated [26]. These features combined with the manufacturing
of biomolecule-specific topographies contribute to the improvement of
PDMS performance in terms of sensitivity and efficiency. Recently, the
fabrication of PDMS-based devices has introduced significant advances
in several analytical techniques in terms of sensitivity, time consuming,
and sample volume. Since PDMS material revealed characteristic
properties and reliability, PDMS-nanotechnology has therefore
gained great attention in developing new generation of research
tools. However, both traditional and technology-based approaches
have yet limitations mainly related to sample processing, purification,
separation and enrichment of the small RNA fraction [12,27]. In fact,
advanced biosensors still require specific conjugation steps [28] and
expensive equipment which need to be overcome before they can have
a real clinical application.

Keywords: Polydimethylsiloxane; Large-area Nanostructuring; Lab-
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Introduction

In the last years, predictive and preventive medicine took
advantage on the novel discoveries in nano-diagnostics and smart
therapies, mainly based on the specific identification of molecular
biomarkers, such as nucleic acids (DNA, miRNA) and proteins. The
possibility to detect low amount of biomarkers directly in biological
fluids gives a great advantage in the early diagnosis and therapy of
malignant diseases, which have high social impact. In fact, a correlation
between degenerative, contagious, or inflammatory illnesses with the
presence of specific biomarkers like miRNAs is now well established
[1-5]. However, this remains a challenging task since in each biological
sample several different biomolecular species co-exist, and moreover
it is very hard to treat them in order to achieve the degree of purity
and concentration required for a quantitative, specific, and reliable
identification. To overcome these obstacles, several nanotechnology-
based systems are being developed and tested for miRNAs detection.
Nanobiosensor development is particularly relevant for such miRNAs,
whose aberrant expression has been shown to correlate with the
pathogenesis and progression of several diseases including cancer

PDMS nanostructures manufacturing may be useful to enhance the
efficient purification of miRNA circulating bio-markers present at low
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[6,7]. MicroRNA-21 (miR-21), in particular, is largely studied since
is overexpressed in a variety of solid [8,9] and hematological tumors
[10,11]. For these reasons, miR-21 was selected as a microRNA
prototype in this study.

Recently, it has been proposed that nanotechnology-based
approaches [12-14] alternative to conventional methods [15-19] for
miRNA detection and quantification can be developed using innovative
biosensors made of Polydimetylsiloxane (PDMS) [20-22]. PDMS is
known to have numerous advantages, supporting its development as a
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concentrations in most specimen such as tissue biopsies and body fluids
[29,30]. This is particularly useful for polymeric platforms that perform
purification processes, which can be improved with appropriate
nanostructured surfaces. In particular, prior works on these PDMS
platforms, have shown that the adsorption of miRNA molecules can
be increased by random roughening present on the sensing surface
[21]. With the aim of improving the miRNA adsorption, we developed
a proper nanostructuration of the PDMS to increase the surface-to-
volume ratio and, furthermore, to get a topography as conform as
possible to miRNAs molecules. The main advantages of our fabrication
protocol are: (i) engineering of material at the nanoscale is achieved
through quick and not expensive methodologies; (ii) nanopatterns are
obtained on large-area compared to standard technologies like focused
ion beam machining or reactive ion etching.

In this paper, we conduct specific experiments testing the
adsorption efficiencies for miRNA molecules captured without any
specific immobilized probes on conformingly nanostructured surfaces.
Functional assay analysis revealed that the miRNA adsorption was
increased by one order of magnitude.

The described results provide direct evidence that the size and
topography of the nanostructures present on PDMS surfaces influence
the miRNA adsorption and facilitates solid-phase extracellular miRNAs
purification from samples.

Materials and Methods

PDMS pattern fabrication

The Polydimethylsiloxane (PDMS, SYLGARD® 184 Silicone
Elastomer, Dow Corning) surface with nano-holes patterns was
fabricated starting from the nanoparticles that intrinsically assemble
from borosilicate glass productions (Supplementary Information). The
surface of coverslip of 24 x 40 mm (Corning Borosilicate Cover glass
Cat. No. 2975-244, Thickness 1), having such gripped nanoparticles
(Supplementary Figure S1), was used to generate large-area PDMS
replicas of 10 cm2 by Replica Molding. We tested two different PDMS
Replica Molding conditions (named sample I and sample II) both
allowing to obtain desired holes pattern. Before using, coverslips were
firstly cleaned in a dry nitrogen stream, sterilised with 70% (v/v) ethanol
for 10 minutes, repeated three times, then dried in a nitrogen stream
followed by further 10 minutes in the oven at 60°C. Coverslips were
functionalized as previously described [26]. Briefly, coverslips were
firstly treated with oxygen plasma (Tucano plasma reactor Gambetti
Kenologia) at 50 W RF power, for 60 sec with an O2 flux of 15 sccm
and 2.0E-01 mbar; then, coverslips were exposed to a 30 minutes long
vapour phase deposition of 20 ul (sample I) and of 40 pl (sample II) of
Trichloro (1H,1H,2H,2H-perfluorooctyl) silane (FOTS, 448931-10G,
Sigma-Aldrich, Saint Louis, Missouri, USA) in vacuum. PDMS was
used with a formulation of 10:1 w/w of the elastomer to curing agent.
The mixture was vacuum-degassed for 20 minutes prior dipping onto
the functionalized glasses. The PDMS curing step was started at room
temperature for 1 h and was completed in an oven for 2 h at 65°C.
Finally, the cured PDMS is peeled off and used as a patterned surface.

Characterization of capturing surfaces

Topography of PDMS replicas was investigated by atomic force
microscopy (AFM) (Dimension 3100 Veeco, hybrid XYZ head, Santa
Barbara, CA, USA; and Olympus OMCL-AC160 tips nominal apical
radius <10 nm, Olympus corporate, Tokyo), operating in tapping
mode under ambient conditions. The root mean square (RMS) value
of the roughness height in native PDMS was of 0.47 +0.06 nm, in

accordance with literature measurements [31,32]. Likewise, the PDMS
replica was characterized by X-ray photoelectron spectroscopy (XPS)
to evaluate the chemical composition of the layers which directly
interact with the biomarkers. XPS measurements were performed
using a Scienta ESCA200 instrument equipped with a hemispherical
analyzer and a monochromatic Al Ka (1486.6 €V) X-ray source, in
transmission mode. The emission angle between the analyzer axis
and the sample surface was 30°, corresponding to a sampling depth
of approximately 5 nm [33]. For each sample Si 2p, O 1s, C 1s, and
F Is core lines were recorded, using the low electron energy flood
gun to compensate sample charging. The quantification, reported as
relative elemental percentage, was done by using the integrated area
of the fitted core lines, after Shirley background subtraction, and by
correcting for the atomic sensitivity factors. This procedure provides a
quantitative analysis.

Functional assay of capturing surfaces

10 ng of synthetic microRNA (hsa-miR-21-Alexa488;
5 -UAGCUUAUCAGACUGAUGUUGA-3') were incubated on
the PDMS surfaces for 20 min at room temperature, washed with
ultrapure water and imaged at the fluorescence microscope Leica
DMLA (LeicaMicrosystems, Germany), equipped with a mercury lamp
and fluorescence filter L5 (Leica Microsystems, Germany). All surfaces
were observed with a 20x magnification objective and measured with
a cooled CCD camera (DFC 420C, Leica Microsystems, Germany). All
fluorescence images were analyzed with Fiji software [33] in order to
quantify the fluorescence of the adsorbed RNA.

Results and Discussion

The use of microdevices as lab-on-a-chip (LOC) for clinical
applications implies to process a small amount of biological sample
where the molecules target of the analysis is dispersed in little quantity.
Moreover, a LOC have to be easy-to-used and compact, a requisite
needed to process the sample also in non-specialized environments,
such as decentralized medical structures or by non-trained personnel.
To fulfil these requirements, a new strategy is presented in this paper.
PDMS nanostructured surfaces were prepared via replica moulding
starting from selected salinized coverslips. The new surfaces, possibly
implementable in future LOCs, were deeply characterized, tested
for microRNAs capture and their performances compared to non-
nanostructured surfaces, as discussed below.

Strategy of miRNA-conformed surface fabrication

Physical dimensions of miRNAs are extremely small. The estimated
length of persistence of a single-chain nucleic acid having similar
number of nucleotides of miRNA-21 (which has 22 ntd), was of 0.4-
0.7 nm [34,35]. Based on miRNA molecules dimensions, we attempted
to fabricate a nano-hole pattern of about 5 nm in depth to obtain
both improved surface to volume ratio and a size range similar to the
tested molecules. The strategy assumed in this study is summarized in
Figure 1, and the PDMS surfaces with nano-holes patterns, obtained as
described above, are show in Figure 2.

The interaction between biomolecules and materials is influenced
strongly by their chemical composition and morphology at the
surfaces of the materials [36]. In order to investigate the factors that
affect miRNA adsorption on PDMS surfaces, we used a combination
of XPS and AFM analyses. In particular, the hypothesis focuses on the
suitability of the nano-hole sizes and on the chemical composition of
the interacting surface that induces a favourable microenvironment to
miRNA binding. XPS measurements showed the presence of fluorine
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miRNA, the surfaces were imaged at the fluorescence microscope.
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Figure 1: Schematic illustration of the nano-patterned surface used as capturing layer for solid-phase miRNA adsorption. A fluorescently-labelled microRNA
(miR-21 conjugated with Alexa488) was incubated on the surface for 20 min. After several washes with ultrapure water aimed at removing the unbound

0nm

Figure 2: AFM topography of the surfaces of PDMS nano-hole pattern (A)
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on PDMS replicas made on the functionalized glasses (Table 1),
confirming that some silane molecules can be transferred to the PDMS
replicas. In particular, the sample II presented the highest fluorine
percentage as expected for the use of the double silane quantity in the
functionalization protocol. Beside fluorine, the chemical composition
has a relative percentage of carbon, oxygen and silicon compatible
with the standard composition of PDMS, as reported in the literature
[31,33,37] and evident for the control surface, which is native PDMS
and did not received any functionalization step.

The AFM images reported in Figure 2 clearly show the formation of
the nano-holes pattern; while the surface of the native PDMS is smooth

and does not evidence any topographic feature. In the patterned
samples the nanometric holes are well visible and the inset in Figure
2B aims to show a profile of a single nano-hole from sample L. In order
to extract quantitative information about the holes distribution, we
evaluated the average width and depth of the holes. The profile of 50
random holes was extracted using the Gwyddion software [38] and
fitted with a Gaussian profile. The average width and depth of the holes
in sample I are 40 + 10 and 4.5 + 1.0 nm, respectively; as expected, the
holes in the sample fabricated using higher silane concentration are
wider and deeper, with corresponding average values of 73 + 23 and
10.6 £ 2.8 nm.
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Surface O (%) C (%) Si (%) F (%)
Control 23.0 34.2 -
Sample | 24.9 33.1 3.1
Sample Il 214 26.6 17.9

Table 1: Elemental composition (atomic percentage) determined by XPS analysis at 30° on differently prepared PDMS replicas. The standard error does not exceed the
1-2% of the reported value. Control surface is a PDMS replica from non-functionalized glass.

As shown in Figure 3, the presence of proper nanopatterns (bars
I and II) can positively affect the miR-21 capturing. This performance
was possible when nanostructures and biomolecule have comparable
dimensions, as in accordance with the nanostructures' properties of
influencing biomolecules behaviour described in literature [36,39]. The
presence of conforming nano-hole pattern is an improvement with
respect to the random roughness present on a PDMS surface obtained
by spin-coating (bar “S”, Figure 3), a surface that we previously studied
for RNA capture from biological samples [21,31]. The microRNA
capture by the nanopatterned surfaces was indeed more than doubled
with respect to the previous PDMS surface. This aspect is particularly
relevant considering the low abundance of microRNAs used as
biomarkers and dispersed in body fluids. A doubling in the surface
capturing efficiency is a real improvement that goes in the direction of
designing microdevices with nanopatterned surfaces, with a possible
huge increase in the biomarker capture. As note, although native
hydrophobic PDMS (untreated) is known to interact with polar samples
[40], stronger interactions were observed when nanostructuration was
present. Finally, Figure 3 also shows that the high presence of fluorine
onto the capturing surface reduce the nanostructures effect (bar II).
An example of fluorescently-labelled miR-21 adsorbed on the different
surfaces is shown in Supplementary Figure S2.

Our scope was to increase platform sensitivity and biomarker
capture efficiency by increasing the number of binding events and
the surface area. Looking forward, the implemented performance
described could allow to overcome the bottlenecks of the surface
devices currently used both in experimental and clinical environments.
So that, the fabrication of a conforming active region of the platform,
i.e. the part responsible for the capture of biomarkers, substantially
introduce new interesting prospective for PDMS-based platforms
applied to biomarker detection. Our results are in accordance with
established nanomaterials special properties which not only allow to
reduce the systems’ size, but also add extra useful characteristics to
biosensor’s surfaces leading to effective improvements in efficiency
and sensibility of analysis result [12,41]. Remarkable surface to volume
ratio and a size range similar to the biomolecules are responsible for
efficient inter-reactions between nanomaterials and biomarkers [41].
Importantly, large active areas allow to increase the volume of biological
liquid samples that can be analyzed by the biosensors, capturing very
low-concentrated biomarkers. Although the described approach still
needs to be optimized, the obtained topography resulted in an efficient
and affordable system to improve biomarker capture from biological
samples, laying the basis for the implementation of microdevices
designed with a suitable surface topography.

Conclusions

As the demands of nanostructured polymers have been increased in
biomedical applications due to their new properties and performance,
attempting to fabricate proper nanopatterns has become increasingly
more important. The PDMS roughness is dependent on the processing
and therefore, directly dependant on the molding process as PDMS
precisely copies even the nanometric features. Increasing the surface
roughness means to increase the surface area and thus, larger area for

F miR-21 Alexa488 ()(103 a.u.)

o] L

S ctr | 1l

Figure 3: Functional assay on the PDMS surfaces. 10 ng of miR-21 A488 were
incubated on the different PDMS replicas: control surface (ctr; replica from
non-functionalized glass) and two replicas from functionalized glass (replica Il
have the double of silane in the functionalization protocol). Surface named S
(spin PDMS) represents the starting surface to be ameliorated for its miRNAs
capture.

interaction/adsorption. Moreover, in this work we provides evidence
that proper surface topography plays an important role in miRNA-21
biomolecule-surface interaction, reporting the role of nano-hole pattern
played in doubling the effects of previously random nanostructured
surface on the capture of miRNA molecules. The nanopatterned
surface with increased capturing efficiency was fabricated by affordable
replica molding procedure on PDMS large surface.

Looking forward, the physicochemical properties of PDMS
pattern could be further tuned, including the optimisation of surface
chemistry, to enhance their selectivity performance. This nano-hole-
based miRNA purification technique could be further improved and
validated for innovative, easy-to-use and integrated device for the
efficient purification of less abundant circulating microRNAs for early
diagnosis of diseases.
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