
Journal of Generalized Lie Theory and Applications Vol. 2 (2008), No. 2, 95–108

Enveloping algebras of Hom-Lie algebras

Donald YAU

Department of Mathematics, The Ohio State University at Newark, 1179 University Drive,
Newark, OH 43055, USA

E-mail: dyau@math.ohio-state.edu

Abstract

Enveloping algebras of Hom-Lie and Hom-Leibniz algebras are constructed.

2000 MSC: 05C05, 17A30, 17A32, 17A50, 17B01, 17B35, 17D25

1 Introduction

A Hom-Lie algebra is a triple (L, [−,−], α), where α is a linear self-map, in which the skew-
symmetric bracket satisfies an α-twisted variant of the Jacobi identity, called the Hom-Jacobi
identity. When α is the identity map, the Hom-Jacobi identity reduces to the usual Jacobi
identity, and L is a Lie algebra. Hom-Lie algebras and related algebras were introduced in [1]
to construct deformations of the Witt algebra, which is the Lie algebra of derivations on the
Laurent polynomial algebra C[z±1].

An elementary but important property of Lie algebras is that each associative algebra A
gives rise to a Lie algebra Lie(A) via the commutator bracket. In [8], Makhlouf and Silvestrov
introduced the notion of a Hom-associative algebra (A,µ, α), in which the binary operation µ
satisfies an α-twisted version of associativity. Hom-associative algebras play the role of associa-
tive algebras in the Hom-Lie setting. In other words, a Hom-associative algebra A gives rise to
a Hom-Lie algebra HLie(A) via the commutator bracket.

The first main purpose of this paper is to construct the enveloping Hom-associative algebra
UHLie(L) of a Hom-Lie algebra L. In other words, UHLie is the left adjoint functor of HLie.
This is analogous to the fact that the functor Lie admits a left adjoint U , the enveloping algebra
functor. The construction of UHLie(L) makes use of the combinatorial objects of weighted
binary trees, i.e., planar binary trees in which the internal vertices are equipped with weights of
non-negative integers.

The second main purpose of this paper is to construct the counterparts of the functors HLie
and UHLie for Hom-Leibniz algebras. Leibniz algebras (also known as right Loday algebras)
[2, 3, 4, 5, 6] are non-skew-symmetric versions of Lie algebras in which the bracket satisfies a
variant of the Jacobi identity. In particular, Lie algebras are examples of Leibniz algebras. In
the Leibniz setting, the objects that play the role of associative algebras are called dialgebras,
which were introduced by Loday in [4]. Dialgebras have two associative binary operations that
satisfy three additional associative-type axioms. Leibniz algebras were extended to Hom-Leibniz
algebras in [8]. Extending some of the work of Loday [4], we will introduce Hom-dialgebras and
construct the adjoint pair (UHLeib, HLeib) of functors. In a Hom-dialgebra, there are two binary
operations that satisfy five α-twisted associative-type axioms.

Each Hom-Lie algebra can be thought of as a Hom-Leibniz algebra. Likewise, to every Hom-
associative algebra is associated a Hom-dialgebra in which both binary operations are equal to
the original one. The functors described above give rise to the following diagram of categories
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and (adjoint) functors.

HomLie
UHLie //

Ä _
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²²

HomAs
HLie
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HomLeib
UHLeib // HomDi
HLeib

oo

Moreover, the commutativity, HLeib ◦ ι = ι ◦HLie, holds.
This paper is the first part of a bigger project to study (co)homology theories of the various

Hom-algebras. In papers under preparation, the author aims to construct:

• Hochschild-type (co)homology and its corresponding cyclic (co)homology for Hom-
associative algebras;

• an analogue of the Chevalley-Eilenberg Lie algebra (co)homology for Hom-Lie algebras;
• an analogue of Loday’s Leibniz algebra (co)homology for Hom-Leibniz algebras.

From the point-of-view of homological algebra, it is often desirable to interpret homology and
cohomology in terms of resolutions and the derived functors Tor and Ext, respectively. In
the classical case of Lie algebra (co)homology, this requires the enveloping algebra functor U ,
since HLie∗ (L,−) ∼= TorUL∗ (K,−) and H∗

Lie(L,−) ∼= Ext∗UL(K,−) for a Lie algebra L, where K
is the ground field. It is reasonable to expect that our enveloping algebra functors UHLie and
UHLeib, or slight variations of these functors, will play similar roles for Hom-Lie and Hom-Leibniz
(co)homology, respectively.

A major reason to study Hom-Lie algebra cohomology is to provide a proper context for
the Hom-Lie algebra extensions constructed in [1, Section 2.4]. After constructing a certain
q-deformation of the Witt algebra, Hartwig, Larsson, and Silvestrov used the machinery of
Hom-Lie algebra extensions to construct a corresponding deformation of the Virasoro algebra
[1, Section 4]. In the classical case of Lie algebras, equivalence classes of extensions are classified
by the cohomology module H2

Lie. The author expects that Hom-Lie algebra extensions will
admit a similar interpretation in terms of the second Hom-Lie algebra cohomology module.

A important result in the theory of Lie algebra homology is the Loday-Quillen Theorem [7]
relating Lie algebra and cyclic homology. In another paper, the author hopes to extend the
Loday-Quillen Theorem to the Hom-algebra setting. Recall that the Loday-Quillen Theorem
states that, for an associative algebra A, HLie∗ (gl(A),K) is isomorphic to the graded symmetric
algebra of HC∗−1(A). It is not hard to check that, if A is a Hom-associative algebra, then so
is gl(A). Therefore, using the commutator bracket of Makhlouf and Silvestrov [8], gl(A) can
also be regarded as a Hom-Lie algebra. There is an analogue of the Loday-Quillen Theorem for
Leibniz algebra and Hochschild homology due to Loday [2, Theorem 10.6.5], which the author
also hopes to extend to the Hom-algebra case.

1.1 Organization

The rest of this paper is organized as follows.
The next section contains preliminary materials on binary trees. In Section 3, free Hom-

nonassociative algebras of Hom-modules are constructed (Theorem 1). This leads to the con-
struction of the enveloping Hom-associative algebra functor UHLie in Section 4 (Theorem 2).

In Section 5, Hom-dialgebras are introduced together with several classes of examples. It
is then observed that Hom-dialgebras give rise to Hom-Leibniz algebras via a version of the
commutator bracket (Proposition 1). The enveloping Hom-dialgebra functor UHLeib for Hom-
Leibniz algebras is constructed in Section 6 (Theorem 3).
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2 Preliminaries on binary trees

The purpose of this section is to collect some basic facts about binary trees that are needed for
the construction of the enveloping algebra functors in later sections. Sections 2.1 and 2.2 below
follow the discussion in [4, Appendix A1] but with slightly different notation.

2.1 Planar binary trees

For n ≥ 1, let Tn denote the set of planar binary trees with n leaves and one root. Below are
the first four sets Tn.

T1 =
{ }

, T2 =
{ }

, T3 =
{

,

}
, T4 =

{
, , , ,

}

Each dot represents an internal vertex. From now on, an element of Tn will simply be called an n-
tree. In each n-tree, there are (n−1) internal vertices, the lowest one of which is connected to the
root. Note that the cardinality of the set Tn+1 is the nth Catalan number Cn = (2n)!/n!(n+1)!.

2.2 Grafting of trees

Let ψ ∈ Tn and ϕ ∈ Tm be two trees. Define an (n+m)-tree ψ ∨ϕ, called the grafting of ψ and
ϕ, by joining the roots of ψ and ϕ together, which forms the new lowest internal vertex that is
connected to the new root. Pictorially, we have

ψ ∨ ϕ =

ψ ϕ

Note that grafting is a nonassociative operation.
Conversely, by cutting the two upward branches from the lowest internal vertex, each n-tree

ψ can be uniquely represented as the grafting of two trees, say, ψ1 ∈ Tp and ψ2 ∈ Tq, where
p + q = n. By iterating the grafting operation, one can show by a simple induction argument
that every n-tree (n ≥ 2) can be obtained as an iterated grafting of n copies of the 1-tree.

2.3 Weighted trees

By a weighted n-tree, we mean a pair τ = (ψ,w), in which:

1. ψ ∈ Tn is an n-tree and

2. w is a function from the set of internal vertices of ψ to the set Z≥0 of non-negative integers.

If v is an internal vertex of ψ, then we call w(v) the weight of v. The n-tree ψ is called the
underlying n-tree of τ , and w is called the weight function of τ . Let Twt

n denote the set of all
weighted n-trees. Since the 1-tree has no internal vertex, we have that T1 = Twt

1 .
We can picture a weighted n-tree τ = (ψ,w) by drawing the underlying n-tree ψ and putting

the weight w(v) next to each internal vertex v. For example, here is a weighted 4-tree,

τ =

5
2

7 (2.1)
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2.4 Grafting of weighted trees

Let τ = (ψ,w) ∈ Twt
p and τ ′ = (ψ′, w′) ∈ Twt

q be two weighted trees. Define their grafting to be

the weighted (p+ q)-tree τ ∨ τ ′ def= (ψ ∨ψ′, ω) with underlying tree ψ ∨ψ′. The weight function
is given by

ω(v) =





w(v) if v is an internal vertex of ψ
w′(v) if v is an internal vertex of ψ′

0 if v is the lowest internal vertex of ψ ∨ ψ′

The grafting can be pictured as

τ ∨ τ ′ = 0

τ τ ′

2.5 The +m operation

Let τ = (ψ,w) ∈ Twt
p be a weighted p-tree, and let m be a non-negative integer. Define a new

weighted p-tree τ [m] def= (ψ,w[m]) with the same underlying p-tree ψ. The weight function is
given by

w[m](v) =

{
w(v) if v is not the lowest internal vertex of ψ
w(v) +m if v is the lowest internal vertex of ψ

Pictorially, if

τ = r

τ1 τ2

then

τ [m] = r +m

τ1 τ2

By cutting the two upward branches from the lowest internal vertex, every weighted n-tree
τ can be written uniquely as

τ = (τ1 ∨ τ2)[r] (2.2)

where τ1 ∈ Twt
p , τ2 ∈ Twt

q with p+ q = n, and r is the weight of the lowest internal vertex of τ .
The same process can be applied to τ1 and τ2, and so on. In particular, every weighted n-tree for
n ≥ 2 can be obtained from n copies of the 1-tree by iterating the operations ∨ and [r] (r ≥ 0).
For example, denoting the 1-tree by i, the weighted 4-tree in (2.1) can be written as

5
2

7 = {i ∨ ((i ∨ i)[5] ∨ i) [2]} [7]

3 Hom-modules and Hom-nonassociative algebras

The purpose of this section is to construct the free Hom-nonassociative algebra functor on which
the enveloping algebra functors are based.

Throughout the rest of this paper, let K denote a field of characteristic 0. Unless otherwise
specified, modules, ⊗, Hom, and End (linear endomorphisms) are all meant over K.
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3.1 Hom-modules

By a Hom-module, we mean a pair (V, α) consisting of:

1. a module V and
2. a linear endomorphism α ∈ End(V ).

A morphism (V, α) → (V ′, α′) of Hom-modules is a linear map f : V → V ′ such that α′◦f = f◦α.
The category of Hom-modules is denoted by HomMod.

3.2 Hom-nonassociative algebras

By a Hom-nonassociative algebra, we mean a triple (A,µ, α) in which:

1. A is a module,
2. µ : A⊗2 → A is a bilinear map,
3. α ∈ End(A).

A morphism f : (A,µ, α) → (A′, µ′, α′) is a linear map f : A → A′ such that α′ ◦ f = f ◦ α and
f ◦ µ = µ′ ◦ f⊗2. The category of Hom-nonassociative algebras is denoted by HomNonAs.

3.3 Parenthesized monomials

In a Hom-nonassociative algebra (A,µ, α), we will often abbreviate µ(x, y) to xy for x, y ∈ A. In
general, given elements x1, . . . , xn ∈ A, there are #Tn = Cn−1 ways to parenthesize the monomial
x1 · · ·xn to obtain an element in A. Indeed, given an n-tree ψ ∈ Tn, one can label the n leaves of
ψ from left to right as x1, . . . , xn. Starting from the top, at each internal vertex v of ψ, we mul-
tiply the two elements represented by the two upward branches connected to v. For example,
for the five 4-trees in T4 as displayed in Section 2.1, the corresponding parenthesized mono-
mials of x1x2x3x4 are x1(x2(x3x4)), x1((x2x3)x4), (x1x2)(x3x4), (x1(x2x3))x4, ((x1x2)x3)x4.
Conversely, every parenthesized monomial x1 · · ·xn corresponds to an n-tree.

3.4 Ideals

Let (A,µ, α) be a Hom-nonassociative algebra, and let S ⊂ A be a non-empty subset of elements
of A. Then the two-sided ideal 〈S〉 generated by S is the smallest sub-K-module of A containing
S such that µ(〈S〉, A) ⊆ 〈S〉 and µ(A, 〈S〉) ⊆ 〈S〉, but 〈S〉 is not necessarily closed under α.
The two-sided ideal generated by S always exists and can be constructed as the sub-K-module
of A spanned by all the parenthesized monomials x1 · · ·xn in A with n ≥ 1 such that at least
one xj lies in S. This notion of two-sided ideals will be used below (first in Section 4.2) in the
constructions of the enveloping Hom-algebras and the free Hom-associative algebras (Section
4.3).

It should be noted that a two-sided ideal as defined in the previous paragraph is not an ideal
in the category HomMod, since it is not necessarily closed under α.

3.5 Products using weighted trees

Each weighted n-tree provides a way to multiply n elements in a Hom-nonassociative algebra
(A,µ, α). More precisely, we define maps

K[Twt
n ]⊗A⊗n → A, (τ ;x1 ⊗ · · · ⊗ xn) 7→ (x1 · · ·xn)τ (3.1)

inductively via the rules:
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1. (x)i = x for x ∈ A, where i denotes the 1-tree.
2. If τ = (τ1 ∨ τ2)[r] as in (2.2), then (x1 · · ·xn)τ = αr ((x1 · · ·xp)τ1(xp+1 · · ·xp+q)τ2)

where αr = α◦· · ·◦α (r times). This is a generalization of the parenthesized monomials discussed
above. For example, if τ is the weighted 4-tree in (2.1), then

(τ ;x1 ⊗ · · · ⊗ x4) = α7
(
x1

(
α2

(
(α5(x2x3))x4

)))

for x1, . . . , x4 ∈ A. Note that

(x1 · · ·xn)τ [m] = αm ((x1 · · ·xn)τ )

(x1 · · ·xp+q)τ∨σ = (x1 · · ·xp)τ (xp+1 · · ·xp+q)σ

3.6 Free Hom-nonassociative algebras

Let E : HomNonAs → HomMod be the forgetful functor that forgets about the binary oper-
ations.

Theorem 1. The functor E admits a left adjoint FHNAs : HomMod → HomNonAs defined
as

FHNAs(V ) =
⊕

n≥ 1

⊕

τ ∈T wt
n

V ⊗n
τ

for (V, αV ) ∈ HomMod, where V ⊗n
τ is a copy of V ⊗n

Proof. First we equip FHNAs(V ) with the structure of a Hom-nonassociative algebra. For
elements x1, . . . , xn ∈ V , a generator (x1⊗ · · ·⊗xn)τ ∈ V ⊗n

τ will be abbreviated to (x1,n)τ . The
binary operation µF : FHNAs(V )⊗2 → FHNAs(V ) is defined as

µF ((x1,n)τ , (xn+1,n+m)σ) def= (x1,n+m)τ∨σ.

The linear map αF : FHNAs(V ) → FHNAs(V ) is defined by the rules:

1. αF |V = αV , and
2. αF ((x1,n)τ ) = (x1,n)τ [1] for n ≥ 2.

Let ι : V ↪→ FHNAs(V ) denote the obvious inclusion map.
To show that FHNAs is the left adjoint of E, let (A,µA, αA) be a Hom-nonassociative algebra,

and let f : V → A be a morphism of Hom-modules. We must show that there exists a unique
morphism g : FHNAs(V ) → A of Hom-nonassociative algebras such that g ◦ ι = f. Define a map
g : FHNAs(V ) → A by

g ((x1,n)τ )
def= (f(x1) · · · f(xn))τ (3.2)

where the right-hand side is defined as in (3.1). It is clear that g ◦ ι = f . Next we show that g
is a morphism of Hom-nonassociative algebras.

To show that g commutes with α, first note that g ◦αF coincides with αA ◦ g when restricted
to V , since f commutes with α. For n ≥ 2, we compute as follows:

(g ◦ αF )((x1,n)τ ) = g
(
(x1,n)τ [1]

)

= (f(x1) · · · f(xn))τ [1]

= αA ((f(x1) · · · f(xn))τ )
= (αA ◦ g)((x1,n)τ )



Enveloping algebras of Hom-Lie algebras 101

To show that g is compatible with µ, we compute as follows:

(g ◦ µF ) ((x1,n)τ ⊗ (y1,m)σ) = g ((x1,n ⊗ y1,m)τ∨σ)
= (f(x1) · · · f(xn)f(y1) · · · f(ym))τ∨σ

= µA ((f(x1) · · · f(xn))τ ⊗ (f(y1) · · · f(ym))σ)

= (µA ◦ g⊗2) ((x1,n)τ ⊗ (y1,m)σ)

This shows that g is compatible with µ as well, so g is a morphism of Hom-nonassociative
algebras.

Note that, by a simple induction argument, every generator (x1,n)τ ∈ FHNAs(V ) can be
obtained from x1, . . . , xn ∈ V by repeatedly taking products µF and applying αF . Indeed, if
τ = (τ1 ∨ τ2)[r] ∈ Twt

n as in (2.2), then (x1,n)τ = αr
F ((x1,p)τ1(xp+1,p+q)τ2) . The same argument

then applies to (x1,p)τ1 and (xp+1,p+q)τ2 , and so on. This process has to stop after a finite
number of steps, since in each step both p and q are strictly less than n. Since g is required to
be a morphism of Hom-nonassociative algebras, this remark implies that g is determined by its
restriction to V , which must be equal to f . This shows that g is unique.

We call (FHNAs(V ), µF , αF ) ∈ HomNonAs the free Hom-nonassociative algebra of (V, αV ) ∈
HomMod. This object is the analogue in the Hom-nonassociative setting of the non-unital
tensor algebra T (V ) = ⊕n≥1V

⊗n. Other free Hom-algebras can be obtained from the free
Hom-nonassociative algebra. One such example is given in Section 4.3.

4 Enveloping algebras of Hom-Lie algebras

The purpose of this section is to construct the enveloping Hom-associative algebra functor that
is left adjoint to the functor HLie, which we first recall.

4.1 The functor HLie

A Hom-associative algebra [8, Definition 1.1] is a Hom-nonassociative algebra (A,µ, α) such that
the following α-twisted associativity holds for x, y, z ∈ A:

α(x) (yz) = (xy)α(z) (4.1)

As before, we abbreviate µ(x, y) to xy. The full subcategory of HomNonAs whose objects are
the Hom-associative algebras is denoted by HomAs.

A Hom-Lie algebra [8, Definition 1.4] (first introduced in [1]) is a Hom-nonassociative algebra
(L, [−,−], α), satisfying the following two conditions:

1. [x, y] = −[y, x] (skew-symmetry),
2. 0 = [α(x), [y, z]] + [α(z), [x, y]] + [α(y), [z, x]] (Hom-Jacobi identity)

for x, y, z ∈ L. The full subcategory of HomNonAs whose objects are the Hom-Lie algebras is
denoted by HomLie.

Given a Hom-associative algebra (A,µ, α), one can associate to it a Hom-Lie algebra

(HLie(A), [−,−], α)

in which HLie(A) = A as a K-module and [x, y] def= xy − yx. for x, y ∈ A [8, Proposition 1.7].
The bracket defined is clearly skew-symmetric. The Hom-Jacobi identity can be verified by
writing out all 12 terms and observing that their sum is 0.

This construction gives a functor HLie : HomAs → HomLie that is the Hom-algebra ana-
logue of the functor Lie that associates a Lie algebra to an associative algebra via the commu-
tator bracket. The functor Lie has as its left adjoint the enveloping algebra functor U . We now
construct the Hom-algebra analogue of the functor U , which is denoted by UHLie.
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4.2 Enveloping algebras

Let (L, [−,−], α) be a Hom-Lie algebra. Consider the free Hom-nonassociative algebra
(FHNAs(L), µF , αF ) and the sequence of two-sided ideals, I1 ⊂ I2 ⊂ · · · ⊂ I∞ ⊂ FHNAs(L)
defined as follows. Let I1 be the two-sided ideal

I1 = 〈 im(µF ◦ (µF ⊗ αF − αF ⊗ µF )); [x, y]− (xy − yx) for x, y ∈ L 〉

Here the linear space L is identified with its image under the inclusion ι : L → FHNAs(L), and
xy denotes µF (ι(x), ι(y)). Inductively, we set

In+1 = 〈In ∪ αF (In)〉, I∞ =
⋃

n≥1

In

Lemma 1. The submodule I∞ ⊂ FHNAs(L) is a two-sided ideal and is closed under αF . The
quotient FHNAs(L)/I∞, together with the induced maps of µF and αF , is a Hom-associative
algebra.

Proof. Given elements x ∈ I∞ and y ∈ FHNAs(L), we know that x ∈ In for some n < ∞.
Therefore, both xy and yx lie in In ⊂ I∞. The two-sided ideal I∞ is closed under αF because,
again, every element in I∞ must lie in some In, and αF (In) ⊂ In+1 ⊂ I∞.

To show that the quotient FHNAs(L)/I∞, equipped with the induced maps of µF and αF ,
is a Hom-associative algebra, we must show that α-associativity (4.1) holds. Let x, y, and z be
elements in FHNAs(L). Consider the diagram of K-modules,

FHNAs(L) ³ FHNAs(L)/I1 ³ FHNAs(L)/I∞

The first projection map sends the element (αF (x)(yz)− (xy)αF (z)) ∈ FHNAs(L) to 0, since it
is in the image of the map µF ◦ (µF ⊗ αF − αF ⊗ µF ) and, therefore, in I1. It follows that the
image of the element (αF (x)(yz)− (xy)αF (z)) in the quotient FHNAs(L)/I∞ is 0 as well. This
shows that FHNAs(L)/I∞ is a Hom-associative algebra.

From now on, we will denote the Hom-associative algebra (FHNAs(L)/I∞, µF , αF ) of Lemma
1 by (UHLie(L), µ, α). This defines a functor UHLie : HomLie → HomAs.

Theorem 2. The functor UHLie : HomLie → HomAs is left adjoint to the functor HLie.

Proof. Let (L, [−,−], αL) be a Hom-Lie algebra, and let j : L→ UHLie(L) be the composition

of the maps L
ι
↪→ FHNAs(L)

pr
³ UHLie(L). Let (A,µA, αA) be a Hom-associative algebra, and

let f : L→ HLie(A) be a morphism of Hom-Lie algebras. In other words, f : L→ A is a linear
map such that f ◦ αL = αA ◦ f and

f([x, y]) = f(x)f(y)− f(y)f(x)

for x, y ∈ L. We must show that there exists a unique morphism h : UHLie(L) → A of Hom-
associative algebras such that f = h ◦ j (as morphisms of K-modules).

By Theorem 1, there exists a unique morphism g : FHNAs(L) → A of Hom-nonassociative
algebras such that f = g ◦ ι. The map g is defined in (3.2). We claim that g(I∞) = 0. It suffices
to show that g(In) = 0 for all n ≥ 1. To see this, first note that g(z) = 0 for any element z in
the image of the map µF ◦ (µF ⊗ αF − αF ⊗ µF ), since g commutes with both µ and α and A
satisfies α-twisted associativity (4.1). Moreover, for elements x, y ∈ L, we have that

g([x, y]− (xy − yx)) = f([x, y])− (f(x)f(y)− f(y)f(x)) = 0
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It follows that g(I1) = 0, again because g commutes with µ. By induction, if g(In) = 0, then
g(αF (In)) = αA(g(In)) = 0 as well. Therefore, g(In+1) = 0, which finishes the induction step.
Since g(In) = 0 for all n ≥ 1, it follows that g(I∞) = 0, as claimed.

The previous paragraph shows that g factors through FHNAs(L)/I∞ = UHLie(L). In other
words, there exists a linear map h : UHLie(L) → A such that g = h ◦ pr. Since the operations µ
and α on UHLie(L) are induced by the ones on FHNAs(L), it follows that h is also compatible
with µ and α. In other words, h is a morphism of Hom-associative algebras such that

f = g ◦ ι = h ◦ pr ◦ ι = h ◦ j

The uniqueness of h follows exactly as in the last paragraph of the proof of Theorem 1. This
finishes the proof of the Theorem.

4.3 Free Hom-associative algebras

The construction of the functor UHLie can be slightly modified to obtain the free Hom-associative
algebra functor. Indeed, all we need to do is to redefine the ideals In as follows. Let (V, α) be
a Hom-module. Define

J1 = 〈im(µF ◦ (µF ⊗ αF − αF ⊗ µF ))〉
Jn+1 = 〈Jn ∪ αF (Jn)〉, and J∞ =

⋃

n≥1

Jn

Essentially the same argument as above shows that J∞ is a two-sided ideal that is closed under
α. Moreover, the quotient module

FHAs(V ) def= FHNAs(V )/J∞ (4.2)

equipped with the induced maps of µF and αF , is the free Hom-associative algebra of (V, α). In
other words, FHAs : HomMod → HomAs is the left adjoint of the forgetful functor
HomAs → HomMod. The functor FHAs gives us a way to construct a Hom-associative
algebra starting with just a Hom-module.

Conversely, if (A,µ, α) is a Hom-associative algebra, then the adjoint of the identity map
on A is a surjective morphism g : FHAs(A) ³ A of Hom-associative algebras. The kernel of
g is a two-sided ideal in FHAs(A) that is closed under α. This allows us to write any given
Hom-associative algebra A as a quotient of a free Hom-associative algebra,

A ∼= FHAs(A)/ ker(g) (4.3)

where the isomorphism is induced by g.
Other free Hom-algebras, including free Hom-dialgebras, free Hom-Lie algebras, and free

Hom-Leibniz algebras, can be constructed similarly from the free Hom-nonassociative algebra.

5 Hom-dialgebras and Hom-Leibniz algebras

The purposes of this section are (i) to introduce Hom-dialgebras and give some examples and
(ii) to show how Hom-dialgebras give rise to Hom-Leibniz algebras.
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5.1 Dialgebras

First we recall the definition of a dialgebra from [4]. A dialgebra D is a K-module equipped with
two bilinear maps a, ` : D⊗2 → D, satisfying the following five axioms:

x a (y a z) (1)
= (x a y) a z (2)

= x a (y ` z), (x ` y) a z (3)
= x ` (y a z)

(x a y) ` z (4)
= x ` (y ` z) (5)

= (x ` y) ` z
(5.1)

for x, y, z ∈ D. Many examples of dialgebras can be found in [4, pp. 16-18].

5.2 Hom-dialgebras

We extend this notion to the Hom-algebra setting. A Hom-dialgebra is a tuple (D,a,`, α),
where D is a K-module, a,` : D⊗2 → D are bilinear maps, and α ∈ End(D), such that the
following five axioms are satisfied for x, y, z ∈ D:

α(x) a (y a z) (1)
= (x a y) a α(z)

(2)
= α(x) a (y ` z)

(x ` y) a α(z)
(3)
= α(x) ` (y a z)

(x a y) ` α(z)
(4)
= α(x) ` (y ` z) (5)

= (x ` y) ` α(z)

(5.2)

We will often denote such a Hom-dialgebra byD. A morphism f : D → D′ of Hom-dialgebras is a
linear map that is compatible with α and the products a and `. The category of Hom-dialgebras
is denoted by HomDi.

Note that if D is a Hom-dialgebra, then, by axioms (1) and (5), respectively, both (D,a, α)
and (D,`, α) are Hom-associative algebras.

5.3 Examples of Hom-dialgebras

1. If (A,µ, α) is a Hom-associative algebra, then (A,a,`, α) is a Hom-dialgebra in which
a= µ =`.

2. If (D,a,`) is a dialgebra, then (D,a,`, α = IdD) is a Hom-dialgebra.
3. This example is an extension of [4, Example 2.2(d)]. First we need some definitions. Let

(A,µA, αA) be a Hom-associative algebra, and let (M,αM ) be a Hom-module. A Hom-A-
bimodule structure on (M,αM ) consists of:

(a) a left A-action, A⊗M →M (a⊗m 7→ am), and

(b) a right A-action, M ⊗A→M (m⊗ a 7→ ma)

such that the following three conditions hold for x, y ∈ A and m ∈M :

αA(x)(ym) = (xy)(αM (m))
(mx)(αA(y)) = (αM (m))(xy)
αA(x)(my) = (xm)(αA(y))

A morphism f : M → N of Hom-A-bimodules is a morphism f : (M,αM ) → (N,αN ) of
Hom-modules such that f(am) = af(m) and f(ma) = f(m)a for a ∈ A and m ∈M .

For example, if g : A → B is a morphism of Hom-associative algebras, then B becomes a
Hom-A-bimodule via the actions, ab = g(a)b and ba = bg(a), for a ∈ A and b ∈ B. In
particular, the identity map IdA makes A into a Hom-A-bimodule, and g : A→ B becomes
a morphism of Hom-A-bimodules.
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Now let (M,αM ) be a Hom-A-bimodule, and let f : M → A be a morphism of Hom-A-
bimodules. Then the tuple (M,a,`, αM ) is a Hom-dialgebra in which

m1 a m2 = m1f(m2) and m1 ` m2 = f(m1)m2

for m1,m2 ∈ M . The five Hom-dialgebra axioms (5.2) are easy to check. For example,
given elements m1,m2,m3 ∈M , we have that

(m1 a m2) a αM (m3) = (m1f(m2))(f(αM (m3))) = (m1f(m2))(αA(f(m3)))
= αM (m1)(f(m2)f(m3)) = αM (m1)f (m2f(m3))
= αM (m1) a (m2 a m3)

This shows (1) in (5.2). The other four axioms are checked similarly.

5.4 From Hom-dialgebras to Hom-Leibniz algebras

Recall from [8, Definition 1.2] that a Hom-Leibniz algebra is a triple (L, [−,−], α), in which L is
a K-module, α ∈ End(L), and [−,−] : L⊗2 → L is a bilinear map, that satisfies the Hom-Leibniz
identity,

[[x, y], α(z)] = [[x, z], α(y)] + [α(x), [y, z]] (5.3)

for x, y, z ∈ L. The full subcategory of HomNonAs whose objects are Hom-Leibniz algebras
is denoted by HomLeib.

Note that Hom-Lie algebras are examples of Hom-Leibniz algebras. Also, if α = IdL in a
Hom-Leibniz algebra (L, [−,−], α), then (L, [−,−]) is called a Leibniz algebra [2, 3, 4, 5, 6],
which is a non-skew-symmetric version of a Lie algebra. In [4, Proposition 4.2], Loday showed
that a dialgebra gives rise to a Leibniz algebra via a version of the commutator bracket (see
(5.4) below). The result below is the Hom-algebra analogue of that result.

Proposition 1. Let (D,a,`, α) be a Hom-dialgebra. Define a bilinear map [−,−] : D⊗2 → D
by setting

[x, y]
def
= x a y − y ` x (5.4)

Then (D, [−,−], α) is a Hom-Leibniz algebra.

Proof. We write down all twelve terms involved in the Hom-Leibniz identity (5.3):

[[x, y], α(z)] = (x a y) a α(z)− (y ` x) a α(z)− α(z) ` (x a y) + α(z) ` (y ` x)
[[x, z], α(y)] = (x a z) a α(y)− (z ` x) a α(y)− α(y) ` (x a z) + α(y) ` (z ` x)
[α(x), [y, z]] = α(x) a (y a z)− α(x) a (z ` y)− (y a z) ` α(x) + (z ` y) ` α(x)

Using the five Hom-dialgebra axioms (5.2), it is immediate to see that (5.3) holds.

We write (HLeib(D), [−,−], α) for the Hom-Leibniz algebra (D, [−,−], α) in Proposition 1.
This gives a functor

HLeib : HomDi → HomLeib (5.5)

which is the Hom-Leibniz analogue of the functor HLie [8, Proposition 1.7].
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6 Enveloping algebras of Hom-Leibniz algebras

The purpose of this section is to construct the left adjoint UHLeib of the functor HLeib. On the
one hand, this is the Leibniz analogue of the functor UHLie (Theorem 2). On the other hand,
this is the Hom-algebra analogue of the enveloping algebra functor of Leibniz algebras [5].

As in the case of UHLie, the construction of UHLeib depends on a suitable notion of trees,
which we discuss next.

6.1 Diweighted trees

By a diweighted n-tree, we mean a pair τ = (ψ,w) in which:

1. ψ ∈ Tn is an n-tree, called the underlying n-tree of τ , and

2. w is a function from the set of internal vertices of ψ to the set Z≥0 × {a,`}. We call w
the weight function of τ .

The set of diweighted n-trees is denoted by T di
n . As in the case of weighted trees, we have

T di
1 = T1. Every diweighted n-tree τ = (ψ,w) can be pictured by drawing the underlying n-tree
ψ and putting the weight w(v) next to each internal vertex v of ψ.

Let τ = (ψ,w) ∈ T di
n and τ ′ = (ψ′, w′) ∈ T di

m be two diweighted trees. Define the left grafting
to be the diweighted (n+m)-tree, τ ∨l τ

′ def= (ψ ∨ ψ′, ω), where the weight function is given by

ω(v) =





w(v) if v is an internal vertex of ψ,
w′(v) if v is an internal vertex of ψ′,
(0,a) if v is the lowest internal vertex of ψ ∨ ψ′.

The right grafting τ ∨r τ
′ is defined in exactly the same way, except that ω(v) = (0,`) if v is

the lowest internal vertex of ψ ∨ ψ′.
Let m be a non-negative integer. Suppose that τ = (ψ,w) is a diweighted n-tree in which

w(v) = (s, ∗) ∈ Z≥0 × {a,`}

where v is the lowest internal vertex of ψ. Define a new diweighted n-tree, τ [m] def= (ψ,w[m]),
in which the weight function is given by

w[m](u) =

{
w(u) if u 6= v

(s+m, ∗) if u = v

In other words, τ [m] adds m to the integer component of the weight of the lowest internal vertex
of τ .

Every diweighted n-tree τ = (ψ,w) can be written uniquely in the form

τ = (τ1 ∨∗ τ2)[m] (6.1)

where ∗ ∈ {l, r}, τ1 ∈ T di
p , τ2 ∈ T di

q with p+q = n, and m is the integer component of the weight
of the lowest internal vertex of τ . Every diweighted n-tree for n ≥ 2 can be obtained from n
copies of the 1-tree by iterating the operations ∨l, ∨r, and [m] (m ≥ 0).
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6.2 Enveloping algebras

Let (V, αV ) be a Hom-module. Consider the module

F (V ) def=
⊕

n≥ 1

⊕

τ ∈T di
n

V ⊗n
τ (6.2)

where V ⊗n
τ is a copy of V ⊗n. A generator (x1⊗· · ·⊗xn)τ ∈ V ⊗n

τ will be abbreviated to (x1,n)τ .
Define two bilinear operations a,` : F (V )⊗2 → F (V ) by setting

(x1,n)τ ∗ (xn+1,n+m)σ =

{
(x1,n+m)τ∨lσ if ∗ =a
(x1,n+m)τ∨rσ if ∗ =`

Define a linear map αF : F (V ) → F (V ) by the rules:

1. αF |V = αV , and
2. αF ((x1,n)τ ) = (x1,n)τ [1] for n ≥ 2.

Note that F (V ) is the analogue of FHNAs(V ) (Theorem 1) with two bilinear operations. In
F (V ), the two-sided ideal 〈S〉 generated by a non-empty subset S is the smallest sub-K-module
of F (V ) containing S such that x ∗ y ∈ 〈S〉 whenever (x, y) ∈ 〈S〉 × F (V ) ∪ F (V ) × 〈S〉 and
∗ ∈ {a, `}, but 〈S〉 is not necessarily closed under αF . It can be constructed as the sub-K-
module of F (V ) spanned by all the parenthesized monomials x1 ∗ · · · ∗ xn with n ≥ 1 and
∗ ∈ {a,`} such that at least one xj lies in S.

Let (L, [−,−], α) be a Hom-Leibniz algebra. Define an increasing sequence of two-sided ideals,

I1 ⊂ I2 ⊂ · · · ⊂ I∞ ⊂ F (L)

as follows. Set I1 to be the two-sided ideal in F (V ) generated by the subset consisting of:

(1) im(a ◦ (a ⊗αF )− a ◦ (αF⊗ a)), (2) im(a ◦ (a ⊗αF )− a ◦ (αF⊗ `))
(3) im(a ◦ (` ⊗αF )− ` ◦ (αF⊗ a)), (4) im(` ◦ (αF⊗ `)− ` ◦ (` ⊗αF ))
(5) im(` ◦ (αF⊗ `)− ` ◦ (a ⊗αF )), (6) [x, y]− (x a y − y ` x)

for x, y ∈ L. In (6), L is regarded as a submodule of F (V ) via the inclusion map ι : L ↪→ F (V ),
and x ∗ y = ι(x) ∗ ι(y) for x, y ∈ L and ∗ ∈ {a,`}. The first five types of generators in I1

correspond to the five Hom-dialgebra axioms (5.2). Inductively, set

In+1 = 〈In ∪ αF (In)〉, I∞ =
⋃

n≥1

In (6.3)

We are now ready for the Leibniz analogue of the enveloping Hom-associative algebra functor
UHLie.

Theorem 3. Let (L, [−,−], α) be a Hom-Leibniz algebra. Then:

1. I∞ (6.3) is a two-sided ideal in F (L) that is closed under αF .

2. The quotient module UHLeib(L)
def
= F (L)/I∞ equipped with the induced maps of a, `, and

αF , is a Hom-dialgebra.
3. The functor UHLeib : HomLeib → HomDi is left adjoint to the functor HLeib (5.5).

Since this Theorem can be proved by arguments that are essentially identical to those in
Section 4, we will omit the proof.
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