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Abstract

Atherosclerosis, a prime cause of mortality across the developed societies, was targeted by diverse therapeutic
strategies. These evolved in response to the complex etiology and evolution of the disease. Many enzymes are
associated with atherosclerosis, either in the main stream of lipid biosynthesis and transport or in the collateral and
intertwined pathways of oxidative stress, inflammation, vascular remodeling or chromatin stability and are therefore
revised herein. Enzyme exploration led to important developments. At the beginning, there were the statins, derived
as inhibitors of hydroxy-methyl-glutaryl CoA (HMG-CoA) reductase, currently used widely to decrease lipid levels. At
the other end, the inhibitors of the recently discovered proprotein convertase subtilisin/kexin type 9 (PCSK9) are
awaiting the validation in clinical trials with great hopes for the future. In between, one can find some palliatives, as
aspirin, an inhibitor of cyclooxygenase (COX), but also many invalidated candidates. Classical pharmacological data
and newer approaches, like genetic knockouts in murine atherosclerosis models, are reviewed in order to appreciate
the involvement of a particular enzyme in atherogenesis. However, the pursuit of an efficacious drug has been long
and, in many cases, disappointing. Conclusions can be drawn from the overview of both successes and failures, in a
quest for the best.
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Abbreviations
ACAT: Acyl-Coenzyme A-Cholesterol Acyltransferase; apoB:

Apolipoprotein B; apoCI: Apolipoprotein CI; apoE: Apolipoprotein E;
CAT: Catalase; COX: Cyclooxygenase; DNMT: DNA
Methyltransferases; FTase: Farnesyltransferase; GGTaseI:
Geranylgeranyltransferase I; GPx: Gluthation Peroxidase; HDAC:
Histone Deacetylases; HDL: High-Density Lipoprotein; HMGCR: 3-
Hydroxy-3-Methyl-Glutaryl-CoA Reductase; HO: Heme Oxygenase;
IFNγ: γ Interferon; LCAT: Lecithin-Cholesterol Acyltransferase; LDL:
Low-Density Lipoprotein; LDLR: Low-Density Lipoprotein Receptor;
LO: Lipoxygenase; Lp-PLA2: Lipoprotein-Associated Phospholipases
A2; LPS: Lipopolysaccharide; miRNA: microRNA; MMP: Matrix
Metalloproteinase; NFκB: Nuclear Factor KB; NO: Nitric Oxide; NOS:
Nitric Oxide Synthase; oxLDL: Oxidized LDL; PCSK9: Proprotein
Convertase Subtilisin/kexin type 9; PON: Paraoxonase; ROS: Reactive
Oxygen Species; SMase: Sphingomyelin Phosphodiesterase; SMCs:
Smooth Muscle Cells; SMS: Sphingomyelin Synthase; SOD:
Superoxide Dismutase; SPT: Serine Palmitoyltransferase; SQS:
Squalene Synthase; TNFα: Tumor Necrosis Factor α; VLDL: Very
Low-Density Lipoprotein

Introduction
Atherosclerosis continues to remain the leading medical, social and

economic challenge in the developed societies. Atherosclerosis occurs
primarily as a result of the accumulation of cholesterol in the arterial
wall, upon which subsequent events of calcification and inflammation
lead to the formation of a characteristic plaque which reduces the
blood vessel lumen. In the advanced stages, the plaque can be
destabilized and obstruct blood flow, with lethal consequences.

Figure 1: Schematic representation of the main enzymes used as
targets for atherosclerosis, grouped by their metabolic action. The
inhibition or gene knockout of the enzymes written in red protects
to atherogenesis; for the enzymes written in green, the
overexpression has an athero-protective effect and their inhibition
aggravate the atheromatous process.

Despite great research developments, the contemporary life style
and genetic heritage afflict millions of individuals and their number
raises. Due to the multifactorial, multistage manifestation of the
disease, atherosclerosis was approached from different points of view,
from which very diverse therapeutic strategies emerged. Most of them
aimed lipid lowering as a primary therapeutic target, while others
targeted later events to delay the progression of the disease, alleviating
its phenotype. The current status of the most promising approaches,
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either in use or in advanced clinical trials, have been recently reviewed
by others [1,2]. The focus of the current paper was to summarize
contemporary studies addressing the roles of various enzymes
implicated in atherosclerosis, the rationale for targeting them, the
main experimental models utilized, the challenges encountered, the
puzzling/ controversial/ unexpected results. A diverse assortment of
enzymes is presented (Figure 1), without any pretense of being
exhaustive. This outline reflects the current status of both
experimental and theoretical progresses, with an emphasis on the
atherosclerotic murine knockout models, supplemented by
pharmacological data.

From the multitude of the data overviewed below, unfortunately
very few had come to a positive therapeutic end, of which the most
well-known are statins. Others, like the novel PCSK9 (proprotein
convertase subtilisin/kexin type 9) inhibitors, are expected with
enhanced interest. In the same time, numerous inhibitors have proved
to be at least ineffective, if not deleterious. More reflection and the
development of new targeting and delivering strategies may help.

Cholesterol Biosynthesis Related Enzymes

HMG-CoA reductase
HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-CoA reductase,

HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid,
dependent on NADH (EC 1.1.1.88) or NADPH (EC 1.1.1.34) and
controls cholesterol biosynthesis [3], as illustrated in Figure 2.
Therefore, this enzyme is the target of the widely available cholesterol-
lowering drugs known as statins, originally developed to competitively
inhibit the binding of HMG-CoA to HMG-CoA reductase and to
reduce mevalonate synthesis [4]. Statins lower LDL-cholesterol levels
more dramatically than other lipid-lowering agents, and they also
exert pleiotropic effects, including anti-inflammatory, anti-thrombotic
and antioxidant effects [5,6]. The former statins, such as lovastatin,
pravastatin, simvastatin, are derivatives of fungal products, while
newer statins, including atorvastatin, cerivastatin, fluvastatin,
rosuvastatin are synthetic. In various clinical trials involving patients
with hypercholesterolemia, rosuvastatin and atorvastatin induced
greater decreases in LDL-cholesterol than the other statins tested [7].
Despite that statins have been shown to be efficient in clinical trials
and they are now commonly used for hyperlipidemia, they cannot
completely eradicate the risk for cardiac heart disease [8,9]. Apart
from the beneficial effects of statin therapy, the development of
myopathies [10], side effects on hepatic and renal function [11],
diabetes mellitus [12], as well as cognitive dysfunctions [13] were
reported, with higher occurrence for lipophilic statins (atorvastatin,
lovastatin, simvastatin), and lower prevalence for hydrophilic statins
(pravastatin, rosuvastatin). However, the overall benefit for
cardiovascular disease through statin therapy still exceeds the risk of
side effects. Excepting cerivastatin, which was withdrawn because of
severe myopathy and rhabdomyolysis, the tolerability of statins was
similar. An earlier comprehensive review summarized the clinical
benefits of statin therapy in wide-ranging cardiovascular disorders,
such as acute coronary syndrome, cardiac arrhythmias, heart failure,
peripheral arterial disease, cerebrovascular disease, as well as
hypertension [14]. A plethora of studies [15] demonstrated that
regression of atherosclerotic plaque does occur with statin therapy,
and it was estimated that an average of two years of aggressive statin
therapy was required for this regression to take place.

Squalene synthase
Squalene synthase (farnesyl-diphosphate farnesyl transferase;

FDFT1; SQS; EC 2.5.1.21) catalyzes the two step NADPH-dependent
reductive dimerization of two C15-farnesyl pyrophosphate moieties
with the formation of the C30-cholesterol precursor squalene, as
illustrated in Figure 2. Squalene synthase is localized exclusively to the
membrane of the endoplasmic reticulum [16]. Ablation of SQS in mice
is lethal, the enzyme being essential for the development of the central
nervous system [17]. Increased expression of SQS has been shown to
elevate cholesterol levels in mice [18]. The reaction catalyzed by SQS
occurs beyond the branching point of isoprenoid biosynthesis, being
the first committed step in cholesterol synthesis. Thus, it was expected
that SQS pharmacological targeting would be an attractive approach
for the treatment of atherosclerosis due to reduced side effects. To this
aim, various SQS inhibitors were assessed for their capacity of
lowering cholesterol level [19]. Among these, the benzoxazepine
derivative lapaquistat acetate (TAK-475) seemed the most promising.
In animal studies on WHHLMI rabbits, a model for coronary
atherosclerosis and myocardial infarction, TAK-475 slowed down the
progression of coronary atherosclerosis and changed the coronary
atheromatous plaques from an unstable, lipid-rich to a stable,
fibromuscular phenotype [20]. In humans, administration of
TAK-475, alone or together with statins, significantly reduced low-
density lipoprotein (LDL)-cholesterol in a dose-dependent manner. It
also decreased other risk markers, such as C-reactive protein.
However, its hepatotoxic effects such as raised levels of
aminotransferase and bilirubin, led to the termination of advanced
clinical trials [21]. For an extensive review of SQS inhibitors as
antiatherosclerotic agents, the reader is directed to the recent
comprehensive review of Kourounakis [19].

Sphingolipid Metabolism Related Enzymes
Sphingolipids are essential constituents of the plasma membrane,

key signaling molecules and modulators of plasma lipoprotein
metabolism [22]. A preference for cholesterol association with
sphingolipids in the plasma membrane lipid raft microdomains is
believed to serve as a signal transduction centers for immune
responses, which may be important for the inflammatory component
of atherogenesis [23]. Plasma sphingomyelin (SM) emerged recently as
a risk factor for cardiovascular diseases [24], being a key regulator of
plasma lipoprotein metabolism and atherosclerosis [25]. Recently
sphingolipids have been attributed a rather active role in
cardiovascular pathology, since inhibition of their de novo synthesis
raises anti-atherogenic lipoproteins and decreases atherosclerosis in
murine models [26]. Thus, genetic and pharmacological interventions
on the enzymes involved in sphingolipid biosynthetic pathways open a
new avenue for therapeutic approaches in this field.

Serine palmitoyltransferase
Serine palmitoyltransferase (palmitoyl-CoA:L-serine C-

palmitoyltransferase (decarboxylating); SPT; EC 2.3.1.50) catalyzes the
condensation between palmitoyl-CoA and L-serine, the first reaction
in sphingolipid biosynthesis. In eukaryotes the enzyme is anchored to
the endoplasmic reticulum [27] and it consists of a dimer of SPTLC1
and SPTLC2 or SPTLC3 [28] or it could aggregate in even higher
oligomers [29]. SPTLC1 or SPTLC2 knockout in mice embryos is
lethal, while heterozygous animals (Sptlc1(+/-), Sptlc2(+/-)) are viable,
but present a modified plasma lipid profile. Thus, they exhibit
decreased plasma sphingolipid levels, but no change in plasma
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triglyceride, total cholesterol, phospholipids, plasma and liver
sphingomyelin [30]. SPT is specifically inhibited by the fungal
antibiotic myriocin [31]. Treatment with myriocin of apoE-deficient
mice led to reduced levels of plasma sphingolipid, increased level of
phosphatidylcholine, but similar cholesterol or triglyceride level, while
an substantial decrease of the size of the atherosclerotic lesions was
noticed [32,33]. The anti-atherosclerotic effect was due to the
decreased level of sphingolipids, but not of glycosphingolipids, since
EtDO-P4, a glucosylceramide synthesis inhibitor, had no impact on
the lesion area [34]. In other studies, myriocin treatment of apoE-
deficient mice was reported to lower plasma cholesterol and
triglyceride levels in a dose-dependent manner, to reduce VLDL- and
LDL- cholesterol, to increase HDL-cholesterol, and to enhance the
level of apoAI and LCAT in the liver [26]. Recently, a series of
miRNAs have been shown to control β-amyloid level by regulation of
SPT levels, providing a link between the upregulation of SPT and
sporadic Alzheimer’s disease [35]. Therefore, there is still enough
therapeutic potential to be explored by inhibiting SPT.

Sphingomyelin Synthase
Sphingomyelin synthase (ceramide:phosphatidylcholine

cholinephosphotransferase; SMS; EC 2.7.8.27) catalyzes the last step of
SM de novo biosynthesis, through the reaction between ceramide and
phosphatidylcholine, with the formation of sphingomyelin and 1,2
diacylglycerol. Two SMS genes, SMS1 and SMS2, have been cloned
and characterized [36]. The proteins differ by their localization, with
human SMS1 in the Golgi apparatus and SMS2 at the plasma
membrane, and they also exhibit different tissue expression profile.
SMS role in cell survival can be appreciated by the fact that it
consumes the pro-apoptotic ceramide, while generating the anti-
apoptotic diacylglycerol. SMS2 overexpression in apoE-deficient mice
correlated with an enhanced endothelial dysfunction and aggravated
atherosclerotic plaque instability [37]. Hepatic SMS2 is essential for
plasma SM level regulation, as demonstrated with SMS2-deficient and
SMS2 liver-specific transgenic mice. Thus, SMS2-deficient mice had
decreased SM levels, while the transgenic animals overexpressing
SMS2 had increased SM level. Additionally, atherogenic lipoproteins
from the transgenic mice displayed a significantly stronger tendency
toward aggregation after treatment with mammalian
sphingomyelinase, compared with controls. Moreover, SMS2
knockout significantly raised plasma apoE level, whereas liver-specific
SMS2 overexpression decreased it. Plasma of SMS2-deficient mice
promoted cholesterol efflux from macrophages, whereas plasma of
SMS2 transgenic mice prevented it [38]. SMS2 deficiency attenuates
the activation of the pro-atherogenic factor NF-κB, as proved in
murine SMS2 knockout macrophages mice exposed to
lipopolysaccharide (LPS) and in SMS2 siRNA-treated HEK-293 cells
exposed to TNF α [39]. Another group reported that SMS2/apoE
double knockout mice showed a significant decrease in aortic
atherosclerotic lesions [40]. Also, transplantation of bone marrow
alone from SMS2 knockout mice into LDLR-deficient mice led to a
reduction of atherosclerosis [41]. However, in macrophages, SMS2
seems to be responsible only for less than 20% of the total SMS
activity. SMS1 is responsible for most SMS activity of macrophages
and is capable of rescuing growth of SMS2-deficient murine lymphoid
cells [42]. SMS1 knockout mice have significantly decreased level of
sphingomyelin and highly increased levels of glucosylceramide and
GM3 in the plasma, liver, and macrophages, an effect not seen for
SMS2 deficiency. As for SMS2 knockout, SMS1 deficiency attenuated
LPS-induced Nk-FB activation and SMS1-deficient mice bone marrow

transplantation into LDLR-deficient mice led to a reduction of
atherosclerosis [43]. Recent data showed that, besides the alteration in
lipid profile, SMS1 null mice exhibited increased pro-atherogenic
oxidative stress [44]. Despite the valuable data accumulated via genetic
manipulation of Sms genes, the pharmacological approaches lagged
behind. Only recently, small molecule SMS inhibitors in the micro
molar range that could be used in atherogenesis or related pathologies
as insulin resistance, were described [45]. Pharmacological reduction
of SMS has also proved that SMS could be a target of anti-atherogenic
therapy. Dy105, a SMS inhibitor, reduced SM levels in SM-rich
microdomains on cell membranes, decreased apoB secretion in a
human hepatoma cell line and impaired the activation of NF-κB and
p38 in bone marrow derived macrophages [46]. It appears that tissue-
specific SMS targeting could lead to new developments in anti-
atherosclerotic therapies.

Sphingomyelinase
Sphingomyelinase (Sphingomyelin phosphodiesterase; SMase;

EC3.1.4.12) catalyzes sphingomyelin (SM) breakdown into
phosphocholine and ceramide. A few types of SMases have been
described so far, depending on their optimal pH and cation
requirements for activity. Among these, important SMases in
cardiovascular pathology are (i) secreted and lysosomal acidic zinc-
dependent isoforms, and (ii) membrane magnesium-dependent SMase
[47]. Cellular stress activates these SMases with the subsequent
generation of ceramide; however, the final effects depend on the
SMase type and its cellular locations [48]. The two forms of acidic
SMase balance their level on the account of each other, by diverting a
common precursor toward Golgi or lysosomes upon receiving specific
signals [49]. Most reports point toward a pro-atherogenic role of
secretory SMase: it is present in the atherosclerotic lesions and binds
specifically to certain subendothelial extracellular matrix constituents,
stimulating subendothelial accumulation of atherogenic lipoproteins
[50]; increased activity of secretory SMase and specific ceramides in
the aorta of apoE-deficient mice during aging were reported [51];
SMase treatment of lipoproteins from apoE-deficient mice enhanced
their potential as inducers of macrophage foam cell formation [52].
Additionally, acidic SMase deficient mice on a apoE-/- or LDLR-/-
atherosclerosis-prone genetic background showed significantly
reduced lipid retention and atherosclerotic lesions, despite no
alteration in plasma cholesterol or lipoproteins, supporting a causative
role of SMase in atherogenesis [53]. Surprisingly, adeno-associated
virus-mediated expression of acidic SMase in apoE-deficient mice
reduced atherosclerosis [54]. Secretory SMase is released by
endothelial cells in vitro upon signaling by inflammatory cytokines. Its
level is also increased in LPS treated wild-type mice via IL-1, as
demonstrated by abrogation of this increase in IL-1 converting
enzyme knockout mice or further enhancement in IL-1-receptor
antagonist knockout mice [55]. Macrophages deficient in lysosomal
SMase exhibited an impaired cholesterol traffic and efflux [56].
Generation of ceramide via hydrolysis of membrane SM by acidic
SMase results in lipid rafts clustering and promotes oxidative stress-
induced endothelial dysfunction [57]. Neutral SMase 2 has been also
implicated in the evolution of atherosclerosis, mainly in relation to
plaque remodeling and fibrous cap degradation [58]. Thus, apoCI and
apoCI-enriched HDL activate the neutral SMase-ceramide signaling
pathway, leading to apoptosis in human aortic SMCs, an event that
may promote plaque rupture in vivo [59]. Other reports of the
involvement of neutral SMase in the cardiac pathology are
summarized in ref. [60]. A recent study reports that palmitate-induced
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inflammatory response of microvascular endothelial cells to LPS
involves neutral SMase [61]. Recently, alkaline sphingomyelinase,
which was less related to atherogenic processes, has been implicated as
a physiological factor promoting cholesterol absorption by reducing
SM levels in the intestinal lumen, as demonstrated in a murine
knockout model [62]. Despite the extensive exploration of SMase
mechanisms of action, design of specific SMase-type inhibitors is still a
challenge and they have not received yet clinical validation [47].

Lipoprotein Metabolism Related Enzymes

Acyl-coenzyme A: cholesterol acyltransferases (ACAT)
Acyl-coenzyme A: cholesterol acyltransferase (ACAT; EC 2.3.1.26)

catalyzes the conversion of cholesterol to cholesteryl esters (CE) [63],
as illustrated in Figure 2. ACAT is part of a family containing also
DGAT (diacylglycerol acyltransferase) [64], and MGAT
(monoacylglycerol acyltransferase) [65]. The two isoforms of ACAT
identified in mammals are differentially expressed: ACAT1 is
ubiquitously expressed while ACAT2 is secreted by the liver and small
intestine [66]. Increased ACAT1 expression was detected in
macrophage-derived foam cells in human atherosclerotic lesions,
revealing its contribution to the foam cell formation during
atherogenesis [67]. Considering that ACAT1 inhibition prevented the
macrophages foam cells formation and thus exerted protective effects
against atherosclerosis, several ACAT inhibitors have been
synthesized. It was reported that CI-976 ACAT inhibitor was effective
in reducing the accumulation of CE in the atherosclerotic plaques of
Yucatan micropig [68]. Likewise, the ACAT inhibitor avasimibe
reduced atheroma in rabbits [69] and in apoE3-Leiden mice [70] and
F-1394 inhibitor markedly decreased early or advanced atherosclerotic
plaques in apoE-deficient mice [71,72]. Despite the promising results
noticed in animals, negative results have been obtained in clinical
trials. Thus, in A-PLUS (Avasimibe and Progression of Lesions on
UltraSound) trial, avasimibe caused a mild increase in LDL-cholesterol
and did not positively alter coronary atherosclerosis [73]. In another
study, pactimibe treatment of patients with coronary atherosclerosis
also failed to reduce the volume of atherosclerotic plaques [74]. These
negative results may be due to the lack of selectivity for ACAT1 or
ACAT2 of avasimibe and pactimibe. To evaluate whether selective
ACAT1 inhibition would lead to beneficial effects against
atherosclerosis, ACAT1-/-/apoE-/- and ACAT1-/-/LDLR-/- mice were
generated. The results showed that in both strains of double transgenic
mice, ACAT1 deficiency had detrimental effects, resulting in dry eye
syndrome, extensive xanthomatosis [75], as well as deposition of
unesterified cholesterol in skin and brain [76]. Then, the question of
whether macrophage-specific ACAT1 inhibition would be effective in
treating atherosclerosis was raised. Using LDLR-/- mice lacking
ACAT1 in macrophages, Fazio and coworkers noticed that the
inability of these cells to esterify cholesterol resulted in a toxic
accumulation of free cholesterol and even accelerated atherogenesis
[77]. On the other hand, ACAT2-deficient mice were protected against
diet-induced hypercholesterolemia and cholesterol gallstone
formation due to the lack of CE synthesis in the intestine and
consequently a restricted capacity to absorb cholesterol [78,79].
Moreover, these mice were also protected from atherosclerosis when
they were crossed with apoE-deficient mice [80]. Interestingly, in
ACAT2-/-/apoE-/- mice a compensatory increase in LCAT (lecithin
cholesterol acyltransferase) activity was noticed, explaining the high
levels of HDL-CE. Additionally, mice lacking both ACAT2 and LCAT
on LDLR-/- background were highly resistant to atherosclerosis [81].

The complete absence of CE from the plasma of these ACAT2-/-/
LCAT-/-/LDLR-/- mice confirmed that there are only two enzymes
that possess the ability to synthesize plasma CE, LCAT and ACAT2,
but not ACAT1. Another approach for ACAT2-specific inhibition in
the liver was the use of antisense oligonucleotides, which resulted in
atheroprotection [82].

Figure 2: Isoprenoid metabolism with branching pathways leading
to cholesterol / cholesteryl esters biosynthesis or protein
prenylation. The main enzymes whose inhibition is beneficial in
atherosclerosis are highlighted in red. This metabolic pathway links
enzymes involved in multiple processes related to cholesterol
metabolism, relevant for atherosclerosis.

The results of the studies in mouse models raised the question of
whether ACAT2-specific inhibition will protect against atherosclerosis
in humans. Hence, the development of selective ACAT2 inhibitors is
of utmost importance, but remains a challenge.

Lecithin cholesterol acyltransferases (LCAT)
Lecithin cholesterol acyltransferase (LCAT; EC 2.3.1.43) is a plasma

enzyme playing a key role in the production of plasma CE and in the
formation and maturation of HDL particles. LCAT promotes the
reverse cholesterol transport (RCT), by which excess cellular
cholesterol is removed from peripheral tissues by HDL and
transported to the liver for excretion [83]. Mutations in the LCAT
gene can lead to two very rare autosomal recessive disorders: familial
LCAT deficiency (FLD), in which the complete lack of LCAT activity
affects both α-LCAT activity (the esterification on HDL) and β-LCAT
activity (the esterification on LDL) [84], and fish-eye disease (FED), in
which only α-LCAT activity is reduced [85]. Both disorders are
characterized by very low plasma HDL levels and cholesterol deposits
in the cornea which cause corneal opacities. Patients with FLD may
develop hypertriglyceridemia, as well as renal dysfunctions. Different
studies have reported increased [86] or decreased [87] LCAT activity
in patients with coronary atherosclerosis confirmed by angiography.
The importance of LCAT in the protection against atherosclerosis, as
well as the impact of LCAT mutations on HDL-cholesterol levels is
highlighted by the study of Hovingh et al. that found enhanced
atherosclerosis in heterozygotes for LCAT gene mutations as
compared to controls [88]. Increasing the LCAT activity was proposed
as a promising anti-atherosclerotic strategy, at least in subjects with
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low LCAT levels. In a 25 year follow-up study, vascular abnormalities
and an atherogenic lipid profile were detected in heterozygotes for
LCAT deficiency [89]. In contrast, Calabresi et al. reported that low
HDL levels in the Italian carriers of LCAT mutations, with total or
partial LCAT deficiency, did not result in premature atherosclerosis
[90]. An interesting clinical case supporting the paradoxical
association between LCAT deficiency, low HDL levels, and absence of
subclinical atherosclerosis was recently reported [91]. An explanation
for these contradictory findings has been suggested, such as possible
involvement of other proteins that could alter the effect of LCAT
deficiency on atherosclerosis. As a potential therapy for FLD, Rousset
et al. demonstrated the feasibility of the infusion of human
recombinant LCAT into LCAT-deficient mice which increased
cholesterol efflux and restored the normal lipoprotein phenotype [92].
Despite the numerous studies in animal models and humans focusing
on LCAT, well reviewed in ref. [93], its precise role in atherogenesis
remains to be clarified. Hence, recombinant LCAT as well as recently
developed activators of LCAT may help to answer the question
whether increasing LCAT activity is a valuable anti-atherosclerotic
strategy.

Lipoprotein-Associated Phospholipases A2
Lipoprotein-Associated Phospholipase A2 (Lp-PLA2; EC 3.1.1.47)

is an enzyme mainly synthesized by the inflammatory cells, and it is
transported in the blood mostly on circulating LDL particles and to a
lesser extent on HDL and remnant lipoprotein particles (reviewed in
ref. [94]). Lp-PLA2 was discovered as platelet-activating factor (PAF)
acetyl-hydrolase due to its ability to catalyze the degradation of PAF by
hydrolysis of the acetyl group at the sn-2 position, yielding the
biologically inactive products, lyso-PAF and acetate [95]. Due to the
degradation of proinflammatory PAF and indirect inhibition of
platelet activation, Lp-PLA2 was initially considered as an anti-
inflammatory protein. Thus, it was reported that overexpression of
human PAF acetyl-hydrolase (induced by adenovirus-mediated gene
transfer) significantly reduced the macrophages recruitment to the
atherosclerotic lesion in the aortic root of apoE-/- mice [96]. Likewise,
human PAF acetyl-hydrolase gene transfer in apoE-/- mice decreased
the oxidized lipoproteins accumulation, inhibited neointima
formation and atherosclerosis [97]. However, increasing evidence
support a pro-atherogenic role for this enzyme that hydrolyzes
oxidized LDL particles generating lyso-phosphatidylcholine and pro-
inflammatory oxidized fatty acids, which can amplify the atherogenic
process. Increased expression of Lp-PLA2 by macrophages was
detected in human and rabbit atheroma [98]. An association of Lp-
PLA2 expression in vulnerable and ruptured atherosclerotic plaques
was also revealed [99]. Moreover, increased Lp-PLA2 activity was
positively associated with coronary heart disease [100], suggesting the
modulation of the enzyme activity as a potential target in
cardiovascular disorders.

Based on the hypothesis that the inhibition of Lp-PLA2 activity may
have beneficial effects, a lentiviral-mediated RNAi approach was used
to knock-down Lp-PLA2 expression in apoE-deficient mice [101]. The
results showed that Lp-PLA2 RNAi reduced inflammation and
attenuated the development of atherosclerotic plaques [101]. In
diabetic and hypercholesterolemic swine, darapladib, a selective
inhibitor of Lp-PLA2, significantly reduced plasma and lesion Lp-
PLA2 activity and inhibited the progression of advanced coronary
atherosclerosis [102]. Also, A-002 (Varespladib), an inhibitor of
secretory Lp-PLA2, reduced lipid accumulation in the aorta and the
development of diet-induced atherosclerosis in guinea pigs, despite

any changes in plasma lipids [103]. In spite of the positive effects of
Lp-PLA2 inhibitors in mice and pigs, clinical trials that evaluated the
darapladib efficiency gave disappointing results. Thus, in the
STABILITY study (“Stabilization of Atherosclerotic Plaque by
Initiation of Darapladib Therapy”), darapladib failed to diminish the
risk of cardiovascular death in patients with stable coronary heart
disease [104]. In the SOLID-TIMI 52 study, this pharmacological
inhibitor failed to reduce the risk of major coronary events in patients
with recent acute coronary syndrome events [105]. In another trial,
varespladib treatment increased the risk for myocardial infarction,
leading to early termination of the VISTA-16 trial [106].

Recently, the exomes of 6325 participants were sequenced in the
“Atherosclerosis Risk in Communities” study in order to find genetic
variants of PLA2G7 gene encoding for Lp-PLA2 that reduce its activity
and the results of this study showed no association between loss-of-
function variants and cardiovascular risk [107].

Proprotein convertase subtilisin/kexin type 9 (PCSK9)
Proprotein convertase subtilisin/kexin type 9 (PCSK9; EC

3.4.21.111) is a serine protease important for cholesterol homeostasis
via hepatic degradation of LDLR [108]. Mutations of PCSK9 are
responsible for autosomal dominant hypercholesterolemia, the third
hypercholesterolemia-associated genetic locus, after LDLR and ApoB.
PCSK9 binds to the epidermal growth factor-like repeat A (EGF-A)
domain of LDLR, inducing its degradation, with subsequent decreased
metabolism of LDL-cholesterol and hypercholesterolemia [109].
Interestingly enough, the gene was initially identified as being involved
in the differentiation of cortical neurons [110]. Since its discovery, a
little over a decade, inhibitors of this enzyme have already entered
Phase III trials as therapeutic agents for lowering cholesterol level [1].
These inhibitors belong to several classes: monoclonal antibodies
(alirocumab, evolocumab), peptide mimetics of the EGFA domain of
the LDLR, gene silencers, and small molecules. Safety issues are under
research.

Oxidative Stress Related Enzymes
Reactive oxygen species (ROS) production in limited amounts is

required to maintain the physiological redox balance. Oxidative stress
appears when ROS levels exceed the detoxifying capability of the cells,
and it has deleterious effects on the cellular components, leading to
abnormal physiological function and cell death. Oxidative stress
exacerbates atherosclerosis. In the vasculature, the major ROS-
producing enzymes are represented by NADPH oxidases,
cyclooxygenases, lipoxygenases, dysfunctional - “uncoupled” enzymes
- endothelial NO synthase (eNOS) and xanthine oxidase, and the
mitochondrial respiratory chain [111]. NADPH oxidase, besides its
primary function in ROS production, can induce eNOS uncoupling as
well as xanthine oxidase activation [112]. Thus, dysfunctional xanthine
oxidase and eNOS become ROS-generators only when they are
provided with an external source of ROS (e.g. NADPH oxidases),
becoming secondary providers of ROS [113]. Besides the ROS
producers, there are the enzymatic ROS scavengers, represented by
superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx),
heme oxygenase, paraoxonase (PON), thioredoxin, glutaredoxin, and
peroxiredoxin, etc. These enzymes play important roles in maintaining
the normal redox status, and thus may be targeted in atherosclerosis.
In this review, we will focus on the main ROS producers (NADPH
oxidase and Nitric Oxide Synthase), and on some ROS scavengers
(SOD, catalase, GPx, heme oxygenase and PON). Cyclooxygenase and
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lipoxygenase will be discussed in section 6, since their function is
mainly related to the biosynthesis of inflammatory mediators with
important role in atherosclerosis development.

NADPH oxidase
NADPH oxidase (nicotinamide adenine dinucleotide phosphate-

oxidase, EC 1.6.3.1) is a membrane-bound enzyme complex. There are
five isoforms of NADPH oxidase, named from NOX1 to NOX5. NOX
is formed by five subunits: a membrane-associated cytochrome b558,
containing p22phox and gp91phox, and three cytosolic regulatory
subunits, p40phox, p47phox, and p67phox; there are also two different
homologs: Nox organizer 1 (Noxo1), a p47phox analog, and Nox
activator 1 (Noxa1), a p67phox analog. NOX activation also involves
GTP-binding protein, Rac1/2 or Rap 1A. The structure and function
of NADPH oxidases are presented in detail by Maneaȋ [114]. The cells
involved in atherosclerosis express NADPH oxidases. Endothelial cells
express four NADPH oxidase isoforms, out of which NOX1, 2, and 5
trigger endothelial dysfunction and vascular disease, and NOX4
generates hydrogen peroxide and exerts protective effects on the vessel
wall [115]. In macrophages, Nox1 and Nox4 are inducible and mediate
LDL oxidation [116]. Recently, Nox5 was revealed to be constitutively
expressed in human monocytes and induced in macrophages by IFNγ
and oxidized LDL, with implications on atherogenesis [117]. SMCs
express Nox1, Nox4, and Nox5 and a low Nox2 level and adventitial
fibroblasts contain primarily Nox2 and Nox4 [118].

Pharmacological data showed that NOX1- and NOX4 inhibitor
(GKT136901) decreased ROS production and atherosclerosis
[119,120]. Noxa1 represents a potential pharmacological target for the
modulation of ROS production in atherosclerotic arteries [119].
Studies of pharmacological inhibition NOX1/2 using apocynin showed
that aortic atherosclerotic lesions of apoE-/-/LDLR-/- double
transgenic mice were decreased, especially on descending aorta, but
not in the aortic arch [121].

These data corroborated with other studies on two double knockout
mice models: apoE-/-/p47phox-/- and apoE-/-/Nox2-/- double
knockout mice [122-124] which indicated that the atherosclerotic
lesion formation on the aortic sinus was not affected. These data
suggest that NOX2 effect on atherogenesis is different in various
regions of the vasculature. However, other data from the literature
showed that apoE-/-/p47phox-/- mice were protected from
atherosclerosis as compared to the apoE-deficient mice, and the
atherosclerotic lesions of the whole aorta (including the aortic arch)
were diminished [120,123,125].

Contradictory data were also reported for Nox1-/-/apoE-/- mice
maintained on a high-fat diet. Sheehan and co-workers reported that
these double knockout mice developed fewer and smaller
atherosclerotic lesions [126], while another group determined that the
lesions were even larger than those found on apoE-/- mice [115].

Nitric Oxide Synthase
Nitric Oxide Synthase (NOS; EC 1.14.13.39) catalyzes the nitric

oxide (NO) production from L-arginine. The endothelial NOS (eNOS)
and the neuronal NOS are constitutively expressed and the inducible
NOS (iNOS) is biosynthesized in pathological states such as heart
failure [127]. At the level of the vasculature, NO is involved in
homeostasis, having vasodilator, antiproliferative and antiplatelet
actions, as recently reviewed in ref. [128]. Endothelial NOS is mainly
located in endothelial vesicles, named caveolae [129], localization that

confers a controlled activation, through the interaction with caveolin-1
[130]. Our previous data showed that eNOS gene polymorphism
(eNOSG894T) is a risk factor for cardiovascular diseases and
hypertension, but also in other maladies accompanied by endothelial
dysfunction such as Fabry's disease [7].

Dysfunctional eNOS (“uncoupled” eNOS) was observed in different
pathological states associated with the oxidative stress. In this state, the
oxygen reduction is uncoupled from NO synthesis as recently
explained by Heltianu et al. and Takimoto et al. [131,132]. Many
experimental trials were done to recouple NOS in cardiovascular
diseases including: administration of tetrahydrobiopterin BH4 (to
block upstream ROS production), folic acid (to recycle
dihydrobiopterin into BH4) and L-arginine (to supplement the NOS
substrate) [132-134].

Experimental studies were performed on animal models using
adenovirus-mediated iNOS gene transfer at the site of vascular lesion.
The consequent local NO synthesis induced significant proliferation of
smooth muscle cells and intimal hyperplasia in rats, processes with
important impact on atherosclerosis progression [135].

Superoxide dismutases
Superoxide dismutases (SOD; EC 1.15.1.1) catalyze the dismutation

of the superoxide radical into molecular oxygen and hydrogen
peroxide. SOD family includes three isoforms expressed in different
cellular compartments: cytosolic Cu/Zn SOD1, mitochondrial Mn
SOD2 and Cu/Zn extracellular SOD3 [136]. Despite the fact that
extracellular SOD genetic deficiency was found to have no influence
on atherogenesis in apoE deficient mice [137], SOD local delivery
decreased the cuff-induced arterial neointima [138], accelerated the
endothelial recovery and inhibited in-stent restenosis in the aorta of
Watanabe hyperlipidemic rabbits [139]. Both knockout [140] or
overexpression [141] studies showed that mitochondrial SOD
protected apoE-deficient mice against atherosclerosis. Dietary
supplements up-regulated SOD expression in apoE-deficient mice and
attenuated atherosclerosis [142]. Utilization of synthetic SOD
mimetics over the native Cu/Zn SOD enzyme alleviated endothelial
dysfunction in apoE deficient mice. The search for improved cell
permeability and stability is expected to lead to the development of
more potent drugs [143].

Catalases
Catalase (CAT, EC 1.11.1.6) is located in peroxisomes where it

reduces
H2O2 to H2O and O2. In apoE-/- mice, systemic overexpression of
catalase
retarded the development of atherosclerosis, which is further
decreased by
combined overexpression of Cu/Zn-SOD and catalase [141]. In apoE-
deficient mice, dietary supplements upregulated CAT expression and
reduced atherosclerosis [144,145]. CAT is also powerful in the
attenuation of non-dietary atherosclerosis in apoE-deficient mice.
Thus, its overexpression in apoE mice exposed to the polycyclic
aromatic hydrocarbon benzopyrene, alone or in association with
Cu/Zn-SOD, led to increased protection as compared with those
overexpressing only Cu/Zn-SOD [146].

Although antioxidant enzymes are important therapeutic agents for
relieving the vascular oxidative stress, their rapid elimination from the
bloodstream compromises their effects. Therefore, various chemical
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and gene delivery methods were envisioned [147,148], to maximize
their anti-atherogenic potential.

Glutathione peroxidases
Glutathione peroxidases (GPx; EC 1.11.1.9) are enzymes with

peroxidase activity, playing a protective role against the oxidative
damage. Gpx reduce lipid hydroperoxides to the corresponding
alcohols and catalyze the conversion of hydrogen peroxide to water.
Until present, eight isoforms (GPx-1 to GPx-8) were identified in
humans. In the vasculature, GPx deficiency has implications in
atherogenesis. The double knockout mouse model (GPx-1-/-/apoE-/-)
developed significantly more pronounced atherosclerotic plaques
compared to the apoE-/- control [149]. However, GPx-1 deficiency
could not induce atherosclerosis in high-fat diet fed C57BL/J6 mice
[150]. In humans, decreased GPx-1 activity in red blood cell was found
to be related to multivascular atherosclerosis and an augmented
cardiovascular risk [151]. Diphenyl diselenide, an organoselenium
compound with GPx mimetic abilities was found to inhibit human
LDL oxidation in vitro [152] and to reduce the formation of
atherosclerotic lesions in hypercholesterolemic LDLR knockout mice
[153]. Therefore, it is considered that diphenyl diselenide has
antiatherogenic actions by modulating intracellular signaling pathways
related to antioxidant and anti-inflammatory responses. GPx-1 role in
many diseases and speculations on potential future therapies is
reviewed Lubos et al. [154].

Heme oxygenase-1
Heme oxygenase (HO; EC 1.14.99.3) is an enzyme that catalyzes, in

a rate-limiting reaction, the NADPH–dependent degradation of heme,
with the production of biliverdin, iron, and carbon monoxide. The
beneficial roles exerted by these products of heme catabolism, once
believed to be toxic, are nowadays brought to light: CO is a regulator
of vascular tone, bilirubin is a potent anti-oxidant, while iron increases
the production of the cytoprotective ferritin [155]. Three isoforms of
the enzyme were described so far: HO-1, HO-2 and HO-3. Of these
isoforms, HO-2 and HO-3 are constitutively expressed, while HO-1 is
inducible as a stress response to insults as hypoxia, hyperoxia,
endotoxins. Reports of the rare and lethal genetic HO-1 deficiency in
humans described severe dysfunctions as intravascular hemolysis and
endothelial and renal damage [156] or asplenia and inflammation
[157]. HO-1 null mice are characterized by retarded growth, anemia,
susceptibility to stress, either oxidative or LPS-induced [158,159].
Hypoxia induces apoptosis in cardiomyocytes from heme oxygenase-1
null mice [160] and also compromises the post-ischemic reperfusion
response in heterozygous HO-1 mice [161]. HO-1 has become an
especially interesting target for atheroprotection since the ablation of
heme–binding transcription repressor Bach1 in apoE-deficient mice,
which leads to the overexpression of HO-1 in endothelium,
macrophages, and vascular SMCs, suppresses atherosclerosis in Bach1/
apoE double knockout mice [162]. This effect was abrogated by Sn
protoporphyrin, an inhibitor of HO activity [163]. HO-1 induction in
LDLR-deficient mice by intraperitoneal injections of hemin (H group)
or hemin and desferrioxamine (HD group) led to significantly smaller
atherosclerotic lesions in the proximal aorta upon feeding a high-fat
diet, whereas the group treated with Sn-protoporphyrin presented
larger lesions compared with the control group, which received saline
only [164]. Another inducer of HO-1, the synthetic phenolic
compound butylated hydroxyanisole, was shown to reduce the
proliferation of vascular SMCs via p38/MAPK pathway, being thus a

therapeutic compound useful in atherosclerosis [165]. Certain less
toxic dietary antioxidants also induce HO-1. Besides the
pharmacological modulation by inducers of HO-1 gene expression,
which sometimes may be affected by certain polymorphisms in the
promoter region, alternative strategies may be used for increasing
HO-1 activity, such as gene delivery or exogenous delivery of HO-1
products (CO and bile pigments). For a comprehensive overview of
HO-1 targeting, the reader is directed to Durante [166].

Paraoxonases
Paraoxonases (PONs; EC 3.1.8.1) are antioxidant enzymes that

degrade bioactive oxidized lipids, playing a clear antiatherogenic role.
PONs is present in three forms: PON1 and PON3, which are
structurally and functionally related to HDL particles in the plasma,
and PON2, an intracellular enzyme with a wide cellular distribution
[167]. Besides antioxidant properties, PONs have important
cardioprotective characteristics, including positive effects on
macrophage cholesterol metabolism (PON1), reduction of
macrophage triglyceride accumulation (PON2), as well as
improvement of bile acids metabolism (PON3). The most studied
paraoxonase is PON1, which has been shown to exert protective effects
against lipoprotein oxidation, in particular HDL oxidation [168].
PON1 prevents the accumulation of oxidized LDL and promotes the
cholesterol efflux from macrophages. Interestingly, PON1 was found
to be able to freely exchange between HDL particles and cell
membranes, exerting its antioxidant effects in the new location [169].
A landmark study indicating the atheroprotective role of PON1 is the
generation of PON1-deficient mice, which are more susceptible to
atherosclerosis than their wild-type littermates [170]. Additionally, the
transgenic expression of human PON1 in mice pointed out the ability
of this enzyme to retard or reverse atherosclerosis [171,172]. The
proposed mechanisms for their atheroprotective role are the following:
a reduction in circulating and aortic oxidized-LDL, a decrease in
macrophage oxidative stress and foam cell formation [173], a
stimulation of reverse cholesterol transport and a normalization of the
endothelial function [174]. However, oxidative stress, as well as high
levels of cholesterol, triglycerides and glucose can inactivate PON1. In
humans, low levels of serum PON1 increase the susceptibility to
coronary heart disease, representing a cardiovascular risk factor
[175-177]. Immunostaining studies in human aortas indicated a
progressive increase of PON1 expression during atherosclerosis
development [178]. A natural substrate for PON1 was found to be
homocysteine thiolactone, which is associated with atherogenesis
related to hyperhomocysteinemia [179]; therefore an important
atheroprotective mechanism of PON1 was proposed to take place
through metabolizing homocysteine thiolactone and limiting N-
homocysteinylation.

The possible relationship between PON genetic polymorphisms and
coronary artery disease has just been discussed recently [180]. A meta-
analysis of the Q192R, L55M, and T(-107)C polymorphisms in the
PON1 gene, as well as of the S311C polymorphism in the PON2 gene
found a weak association of coronary heart disease with Q192R
polymorphism, but no with the other polymorphisms [181].

Different substrates and assays were proposed for serum PON1
measurement, as a biomarker for diagnosis of diseases related with
oxidative stress and inflammation, but there are still problems
regarding the variety of substrates and the lack of reference methods
[182,183].
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Vascular Remodeling Related Enzymes

Matrix Metalloproteases
Matrix metalloproteinases (MMPs) are cell surface or secreted zinc-

dependent endopeptidases that hydrolyze extracellular matrix (ECM)
components. Implicated in many biological processes, these
proteinases play a central role both in normal tissue functioning
(embryogenesis, tissue remodeling, wound healing, angiogenesis, etc.),
as well as in various diseases (atheroma, arthritis, cancer, tissue
ulceration, etc.). All MMPs have a common structure containing Zn2+

ion at the catalytic active site. Their activity is controlled by specific
endogenous inhibitors called tissue inhibitors of metalloproteinases
(TIMPs). In humans, MMP family comprises over 20 endopeptidases,
which were classified according to Raffetto and Khalil [184] in the
following subgroups:

1. MMP-1, MMP-8, MMP-13 and MMP-18 collagenases cleave
interstitial collagens I, II and III and other ECM and non-ECM
molecules;

2. MMP-2 and MMP-9 gelatinases digest denaturated collagens, as
well as native collagen types I, IV, fibronectin and laminin; MMP9 was
previously found to be involved in mammalian bone formation by
promoting vascular invasion into the growth plate;

3. MMP-3, MMP-10, and MMP-11 digest ECM components;

4. MMP-7 and MMP-26 matrilysins digest cell surface molecules
and ECM components;

5. MMP-14, MMP-15, MMP-16, MMP-17, MMP-24, and MMP-25
membrane-type act on ECM molecules and collagen I, II and III;

6. other MMPs, with a role in macrophage migration and digestion
of other proteins.

Some of the MMPs family members were identified to be associated
with the atherosclerotic lesions both in human and animal models.
Moreover, their contribution in the weakening of the vascular wall of
the atherosclerotic lesion is well known. Upon MMP activation, matrix
degradation leads to plaque rupture causing unstable angina,
myocardial infarction and stroke (via destruction of ECM proteins).
The stability of the atheromatous plaque depends on the equilibrium
between the biosynthesis and the degradation of ECM. MMPs-1, -2,
-3, -7, -9, -11, -12, -13, -14, and -16 are upregulated in macrophages
found in the human plaques, while in animals, numerous studies
showed that MMPs are also upregulated in the atheromatous plaques
of cholesterol-fed rabbits and apoE-deficient mice [185,186]. MMP-1,
whose inhibition leads to accumulation of collagen in plaques
(correlated with resistance to plaque rupture in humans), was found to
be linked to human acute coronary diseases. Poor collagen content is
found in the fibrous cap of the ruptured atherosclerotic plaque.
MMP-9 expression was enhanced in untreated diabetic apoE-/- mice
and absent in insulin-treated mice [187]. Moreover, MMP-9 was
associated with dysfunctional HDL, which are lipoproteins with
antiatherogenic functions [188]. MMP-12 is involved in plaque
progression and instability, while MMP-14 expression is enhanced in a
distinct subpopulation of foam cell macrophages which have TIMP-3
downregulated [189]. EMMPRIN, an extracellular MMP inducer is
expressed in human atherosclerotic plaque and up-regulated in
apoE-/- mice, playing a role in the plaque rupture [190,191].

To test whether MMP inhibition has a beneficial effect in
atherosclerosis, double-knockout mice of various MMPs on apoE

background were generated. Data obtained on apoE-/-/MMP-2-/-
mice showed that the area of calcified lesions in aortic intima of
double-knockout mice was significantly reduced compared to apoE-/-
mice [192]; in addition, the analysis of aortas from apoE-/-/MMP-2-/-
mice demonstrated a reduction of osteocalcin and BMP2 expression,
which are highly expressed in calcified lesions in apoE-/- mice.
Another study demonstrated that adenoviral overexpression of
TIMP-1 in apoE-/- mouse model reduced the atherosclerotic lesions
[193]. A comprehensive study of Rouis and co-workers [193] analyzed
the double knockouts apoE-/-/MMP-3-/-, apoE-/-/MMP-7-/-,
apoE-/-/MMP-9-/-, and apoE-/-/MMP-12-/- double versus apoE-/-
single knockout. The results showed that in apoE-/-/MMP-3-/- and
apoE-/-/MMP-9-/- double knockouts, the brachiocephalic artery
plaques were larger than in controls. Lesion size was reduced in
apoE-/-/MMP-12-/- double knockouts as compared with the controls.
Moreover, apoE-/-/MMP-12-/- presented increased SMCs number
and fewer macrophages in the plaque suggesting a stable phenotype of
the atheroma. ApoE-/-/MMP-7-/- mice displayed a higher content of
SMCs in the atherosclerotic plaques than controls, but did not present
a change in the plaque stability. MMP-3 and -9 deficient mice
indicated the protective role for these MMPs, while MMP-12
determined increased lesion and plaque destabilization.

The development of therapeutic drugs specifically targeting MMPs
is relevant for atherogenesis prevention, but also for the stabilization
of the mature plaques. Most of the exogenous synthetic inhibitors
generally contain a chelating group designed to bind to the catalytic
zinc atom in the enzyme active site. RS-130830, a non-selective MMP
inhibitor, showed no positive effect on atherogenesis or on the stability
of the plaques in apoE-/- mice [194]. However, doxycycline, which
inhibits MMPs activity, is capable of decreasing gelatinase activity on
atherogenesis in apoE-deficient mice [195]. Inhibition of MMP-3,
MMP-12, and MMP-13 in LDLR-/- mice by the broad-spectrum MMP
inhibitor CGS 27023A led to a delay in intimal lesions formation, but
did not prevent them. A phosphinic peptide (RXP470.1), which
inhibits MMP-12, significantly reduced atherosclerotic plaque and
stopped the evolution of the lesions in the brachiocephalic arteries in
apoE-/- mice [196]. It was reported that MMP13i-A, an inhibitor of
MMP-13 collagenase, administrated in apoE-/- mice did not diminish
the size of the atherosclerotic plaques, did not affect the accumulation
of macrophages or smooth-muscle cells in the lesion site, but
substantially increased interstitial collagen content in the intima and
fibrous cap of the atheroma [197]. Novel MMPs inhibitors are also
being considered and recently reviewed in ref. [198].

Another approach targeting MMPs was based on the use of specific
antibodies. EMPIRIN antibody-therapy showed an amelioration in the
atheroma of apoE-/- mice, through a mechanism including the
reduced migration of monocytes and their accumulation in the plaque
[199].

Inflammation Related Enzymes
Cyclooxygenase and lipoxygenase are involved in the arachidonic

acid metabolism, the precursor of the potent lipid mediators,
prostaglandins and leukotrienes. These are critical modulators of
inflammation, sometimes controversial for atherosclerosis progression
[200].
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Cyclooxygenase
Cyclooxygenase (COX), named also prostaglandin-endoperoxide

synthase (EC 1.14.99.1) is the enzyme responsible for the formation of
prostanoids: prostaglandins and thromboxane A2 (TxA2). There are
two COX isoforms (constitutive COX-1 and inducible COX-2), of
different genetic origins, which are about two-thirds identical and
have nearly identical catalytic sites, but exhibit differences which
allowed the development of specific inhibitors [201]. Nonsteroidal
anti-inflammatory drugs (NSAIDs) inhibit production of
prostaglandins by acting on COX-1 and/or 2 COX-2. Nonselective
NSAIDs inhibit both isoenzymes (e.g., indomethacin, ibuprofen,
naproxen), while selective NSAIDs act on COX-1 (e.g., aspirin) or
COX-2 (coxibs, e.g., celecoxib), but their use appeared to be to a
certain extent a double-edged sword. While relieving the pain and
inflammation, which they were primarily designed for, they also
promoted undesired cardiovascular side effects, mainly by
compromising the balance between the constitutive vasoconstricting
TxA2 produced by platelet COX-1 and the vasodilating endothelial
prostacyclin [202]. The results coming from genetic studies are also
subjected to many variables, and therefore sometimes contradictory.
Disruption of COX-1 gene in apoE-deficient mice led to reduced
platelet-vessel wall interactions and decreased lesion size upon high fat
feeding. These effects are more intense when both COX-1 alleles are
disrupted, as compared with single COX-1 gene deletion [203]. Both
COX-1 and COX-2 were involved in early atherogenesis, as shown by
selective macrophage depletion in apoE-/- and LDLR-/- mice,
respectively [204]. Celecoxib, a selective COX-2 inhibitor, reduced the
area of the atherosclerotic plaques in apoE-/- mice for the duration of
the treatment. The protective effect was lost when drug administration
was interrupted [205]. On the same trend, in high fat-fed LDLR
deficient mice, pharmacological inhibition of COX-2 with either
selective (rofecoxib) or nonselective (indomethacin) or genetic
macrophage-specific COX-2 ablation reduced atherosclerosis [206]. In
contrast, COX-2 postnatal deletion on an apoE-deficient background
accelerated atherosclerosis in a gender-independent manner [207].
COX-2 specific deletion in macrophages attenuated inflammation, but
not atherosclerosis in apoE-deficient mice [208]. In an elegant tandem
of knockout studies, FitzGerald and collaborators showed that, when
specifically targeted, macrophage COX-2 was pro-atherogenic, as
demonstrated by its specific deletion in LDLR-/- mice [209], while
endothelial and vascular SMCs COX-2 reduced atherosclerosis in the
same murine model [210]. Therefore, a successful therapy would
target an anti-inflammatory drug specifically to the macrophage,
avoiding other deleterious systemic side effects. A further
enhancement could be provided by the use of certain natural COX
inhibitors as hyperforin [211] or various flavonoids [212]. Another
strategy is the use of dual inhibitors, as in the case of licofelone, a
combined lipoxygenase/cyclooxygenase inhibitor which entered Phase
III trials [213]. In the end, it is worthwhile to mention that aspirin, an
adjuvant for the main atherosclerotic therapy via its anti-thrombotic
action by inhibiting platelet COX-1 synthesis of TxA2, is sometimes
deprived of its effect in the “aspirin resistance” of multiple etiology
[214].

Lipoxygenase
Lipoxygenases (fatty acid:oxygen oxidoreductase; EC 1.13.11.-)

catalyze the dioxygenation of polyunsaturated fatty acids in lipids
containing a cis,cis-1,4-pentadienic structure. Among the mammalian
arachidonate-related enzymes, 5-lipoxygenase (5-LO), and 12/15-

lipoxygenase (12/15-LO) were thoroughly studied in atherosclerosis
context [215] in relation to their predominant expression in
macrophages. Deficiency of 12/15-LO in bone marrow cells prevented
the high-fat induced atherosclerosis in apoE-/- mice to the same extent
as complete absence of 12/15-LO, despite a high level of peroxidized
lipids. 12/15-LO deficient macrophages were unable to promote
endothelial activation in the presence of native LDL and had decreased
capacity to form foam cells when exposed to LDL [216]. Similarly,
murine atherosclerotic lesions were significantly reduced when 12/15-
LO deficiency was superposed on a LDL-R-/- background [217]. The
double 5-LO and 12/15-LO deficiency reduces atherosclerosis in apoE-
deficient female mice, while males are rather unaffected by LO
deficiency [218], these results being consistent with the gender-
dependent regulation of leukotrienes synthesis [219]. In the light of the
above and other, unmentioned here, studies that point toward a pro-
atherogenic role of lipoxygenases, a degree of uncertainty accompanies
other studies pointing toward a cardioprotective role [220]. A partial
explanation of the noticed discrepancies was correlated with the
genetic complexity of 5-LO genetic locus, since a series of
chromosomal congenic subregions were shown to affect the size of
aortic lesions independently of 5- LO [221].

Posttranslational Modifications Enzymes Related To
Isoprenoid Metabolism

Prenyltransferases posttranslationally modify proteins by adding an
isoprenoid (prenyl) group to the carboxyl terminus of the target
protein, such that these proteins become membrane-associated. Most
prenylated proteins are involved in cellular signaling where membrane
association is essential for their function. Prenyltransferases add a
farnesyl or geranylgeranyl group to the cysteine residue of proteins
having a C-terminal CAAX box. Farnesyltransferase (FTase)
recognizes CAAX boxes where X = Met, Ser, Gln, Ala, or Cys, whereas
geranylgeranyltransferase I (GGTaseI) recognizes CaaX boxes with X
= Leu or Glu [222]. GGTaseI and FTAse I are heterodimers with the
same α subunit encoded by the FNTA gene, but with different β Zn-
containing subunits. Prenylation occurs as a branching pathway of
isoprenoid metabolism, while cholesterol biosynthesis is another.
Therefore, the two pathways are expected to influence each other.
Pathological aspects of prenylations are found in various conditions
such as insulin sensitivity, inflammation, cardiac hypertrophy, hepatic
lipogenesis [223]. Therefore, development of inhibitors to FTase and
GGTase-I would serve therapeutic purposes. The available inhibitors
of FTase and GGTase-I can be classified into four categories: (i) small
molecules competing with the isoprenoid substrate; (ii) small
molecules competing with the protein substrate; (iii) bisubstrate
analogs; (iv) Small molecules uncompetitive with any of the substrates
[224].

Farnesyltransferase (Protein farnesyltransferase)
Farnesyltransferase (FTase, protein farnesyltransferase; EC 2.5.1.58)

adds the C15- isoprenoid farnesyl to proteins bearing the four amino
acid motif CAAX at the carboxyl terminus of a protein, as depicted in
Figure 2. FTase targets Ras superfamily of small GTP-binding proteins
critical to cell cycle regulation and it was associated with various types
of cancer. In mice, FTase knockout is lethal in the embryonic stage,
but it is not essential to adult homeostasis. FTase exclusion during
tumor progression had a restricted inhibitory effect [225]. The
induction of FTase by hyperinsulinemia may partly account for the
proliferative and atherogenic effects of insulin [226]. FTase also plays a
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significant role in progeria (Hutchinson-Gilford syndrome), a process
of accelerated aging in which patients die prematurely due to
atherosclerotic complications. This syndrome is caused by a mutation
of the nuclear protein lamin A, which leads to the retention of the
farnesyl group on the abnormal lamin A protein, progerin and its
accumulation in the nucleus. Progerin accumulation is directly
involved in the vascular disease associated with the syndrome [227].
FTase inhibition has proved to be beneficial for the alleviation of the
condition [228,229]. In the clinical trials of progeric children, FTase
inhibitor lonafarnib improved vascular function, bone structure, and
audiological status [230]. Manumycin A, a farnesyltransferase
inhibitor, prevented atherosclerosis development in apoE-deficient
mice fed a Western diet, independently of cholesterol level. Treated
animals displayed decreased Ras activity and reduced oxidative stress
[231]. FTase inhibitor R115777 hindered protein prenylation in mice
with chronic renal failure, with both local and systemic effects: it
decreased aortic atherosclerotic lesion area, calcification, vascular
nitrotyrosine, total collagen and collagen type I content, restored the
normal serum levels of apolipoprotein IV, α globin and fetuin A. In
vascular smooth muscle cells, R115777 inhibited type I collagen
synthesis and reduced mineral deposition through Ras-Raf pathway
[232]. FPT III, a FTase inhibitor, was found to reduce in-stent
restenosis by a new, Ras-independent pathway in rabbit models [233].
It was found that TR006, an analog of FTase substrate farnesyl
pyrophosphate, which strongly inhibited FTase enzyme activity,
blocked the human smooth muscle cells in culture and inhibited
growth factor-induced DNA synthesis [234]. Combinations of statins
and certain FTIs may exert a concerted action in preventing excessive
cell proliferation. Thus, lovastatin and the FTase inhibitor 3-
allylfarnesol acted synergically to up-regulate and relocate RhoB from
the membrane to cytosolic compartments in A10 vascular smooth
muscle cells [235]. It is expected that combinations of statins and
FTase inhibitors may have therapeutic potential in overproliferation.

Geranylgeranyltransferase-I
Geranylgeranyltransferase-I (GGTase I, EC 2.5.1.59) is a

heterodimer of two subunits: α and β, encoded by the genes FNTA and
PGGT1B, respectively. GGTase I adds the C20-isoprenoid
geranylgeranyl group to CAAX-proteins, one of the targets being the
RHO proteins (Figure 2). GGTase I inhibitors are being investigated
for their therapeutic value in various pathological conditions as
inflammation, multiple sclerosis, atherosclerosis. An extensive review
of GGTase-1 inhibitors and their classification on structural grounds
as natural products, peptide substrate, terpene substrate, etc. is
recommended for further information [236]. Cholesterol-fed LDLR-/-
mice in which GGTaseI was specifically ablated in the macrophages
exhibited increased RHO-mediated cholesterol efflux, stimulated
macrophage reverse cholesterol transport and reduced aortic
atherosclerotic lesions, in spite of a strong inflammatory response
[237]. The selective inhibitor GGTI-286 increased the TNFα-mediated
overexpression of the endothelial cell adhesion molecule E-selectin,
resembling the effect of simvastatin [238]. The same inhibitor
GGTI-286 was effective in suppressing phosphatidylcholine
hydroperoxide-induced THP-1 cell adhesion to ICAM-1 by interfering
with cytoskeletal actin reorganization induced through Rac small
GTPase activation [239]. Importantly, inhibition of
geranylgeranyltransferase but not inhibition of farnesyltransferase
significantly decreased dendritic cells invasion, similarly to
atorvastatin. This effect that regulates the interaction between

dendritic and endothelial cell may have relevance to inflammation and
atherogenesis [240].

Epigenetic Modifications Related Enzymes
Epigenetic changes, affecting both DNA and histones, emerged

recently as therapeutic targets in the field of atherogenesis [241]. Out
of the many types of modifications, only some of them will be
reviewed below.

Histone deacetylases
Histone deacetylases (HDAC; EC 3.5.1.98) are enzymes that remove

the acetyl groups from ε-N-acetyl lysine residues of the histones. This
modification allows a tighter interaction of the histones with the DNA,
and, consequently, it suppresses transcription. Their action is opposed
by histone acetyltransferases. Since lysine deacetylation also modulates
the activity of other non-histone proteins, HDAC proteins are now
considered a subclass of lysine deacetylases (KDAC) [242]. To date,
there are 18 mammalian HDACs, which are grouped on structural
grounds into four classes. Classes I, II and IV form the Zn-dependent
family, while class III (sirtuins) are NAD-dependent enzymes. Other
differences relate to the subcellular localization, with most of them
nuclear, but others with nuclear-cytosolic shuttling capacity [243].
Histone deacetylase inhibitors were mostly developed to target the
tumor evolution [244], three inhibitors: vorinostat (SAHA),
Romidepsin and Belinostat being already approved by the US-FDA
[245]. However, there is an impressive amount of experimental
evidence regarding the involvement of HDACs in cardiovascular
pathology, which has been recently reviewed in correlation with the
stages of atherosclerosis progression [246]. A different reviewing
approach has been used by Lehmann et al., which emphasized the
murine cardiac phenotype associated with the ablation of specific
HDAC class I (high deacetylase activity) and II (low deacetylase
activity), since it appears that each HDAC is endowed with a distinct
function in cardiac pathophysiological remodeling [247]. For example,
homozygous cardiac-specific HDAC 1 and 2 deletion induced cardiac
arrhythmias, dilated cardiomyopathy leading to neonatal lethality
[248]. In contrast, transgenic cardiac overexpression of HDAC3
promoted hyperplasia [249]. Therefore, targeting HDAC with pan-
specific inhibitors may not be a useful approach. HDAC potential in
targeting inflammation and other atherogenic events is however
increasingly explored, and HDAC pharmacological challenge with
inhibitors is claimed to have anti-inflammatory properties and
antifibrotic effects in the cerebro- and cardiovascular system [250].
Very recently, it was shown that oral administration of the histone
deacetylase inhibitor panobinostat to HIV-infected adults on
suppressive antiretroviral therapy in a sub-study of a single-arm, phase
I/II clinical trial, led to a significant suppression of HIV-associated
inflammation and atherosclerosis. This conclusion was drawn upon
evaluation of a panel of cardiovascular risk biomarkers (C-reactive
protein, matrix metalloproteinase 9, soluble CD40 ligand,
interleukin-6, soluble endothelial selectin) [251]. Cell-specific
targeting may increase the chances of therapeutic success through a
limitation of the systemic side effects. Thus, endothelial HDAC3 is as
an essential prosurvival molecule via Akt activation and conditional
Hdac3 knock down in apoE-deficient mice that leads to vessel rupture
and advanced atherosclerosis [252]. In contrast, conditional myeloid
Hdac3 deficiency promotes collagen deposition in atherosclerotic
lesions, stabilizing the plaque and increases macrophage capacity to
cope with inflammation and lipid processing [253].
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DNA methylases
DNA methyltransferases (DNMT) catalyze the reaction implying

the transfer of a methyl group to DNA. DNA methylation serves a
wide variety of biological functions. An in-depth review of the
mammalian DNMT family covering all the structural and mechanistic
details is highly recommended to the reader [254]. DNMT1 (EC
2.1.1.37) is the key member of the family. All known DNMTs use S-
adenosyl methionine as the methyl donor. Increased levels of
homocysteine, a marker of cardiovascular disease, lead to an elevation
of S-adenosylhomocysteine, a potent inhibitor of methyltransferases
throughout the whole genome [255], thus creating a molecular
connection between homocysteine and atherosclerosis. Arterial
branching points affected by the disturbed blood flow are preferred
sites for atherosclerotic plaque development. Recent studies reported
that blood flow hydrodynamics controls endothelial gene expression
via DNMT1-catalyzed DNA methylation, which suppresses various
transcription factors like the cAMP-responsive HoxA5 and KLF3.
DNMT inhibitor 5-Aza-2'deoxycytidine (5Aza) or DNMT1 siRNA
reduces shear stress-induced inflammation. Moreover, 5Aza reduces
atherosclerosis in apoE-/- mice [256]. It was shown that
homocysteine-induced apoptosis in human umbilical vein endothelial
cells proceeds via DNA methylation mediated by DNMT1, and
treatment with the DNMT-1 inhibitors epigallocatechin-3-gallate or 5-
Aza prevented cell death [257]. Both histone- and DNA-methylases
were implicated in the LDL-induced repression of KLF2 transcription
in endothelial cells. LDL-induced endothelial dysfunction effects were
prevented by pharmacological inhibition or gene silencing of DNMT
[258]. DNA methylation was also implicated in the reduced autophagy
of THP-1 macrophages upon exposure to oxidized LDL (oxLDL)
[259]. Additionally, it was shown that oxLDL-induced epigenetic
suppression of FOXP3 down-regulated T regulatory cells,
subsequently increasing the risk of acute coronary syndrome [260].
OxLDL raised significantly MMP-2/MMP-9-mediated migration of
human aortic SMCs by epigenetic effects mediated by miRNA [261].

Histone methyltransferases
Histone methyltransferases (histone-lysine N-methyltransferase

and histone-arginine N-methyltransferase; EC 2.1.1.43) catalyze the
transfer of one to three methyl groups to lysine/arginine residues of
histones [262]. The cofactor S-adenosyl methionine is the methyl
donor group for both types of histone methyltransferases. Histones
methylation is the main chromatin epigenetic modification
responsible for gene expression, genomic stability, development,
mitosis. The involvement of histone methylation in atherosclerosis was
demonstrated in the pro-atherogenic apoE-deficient mice. Histone
methylation is affected both by the genetic environment and
exogenous factors such as diet, as revealed by the different pre- and
post-natal methylation patterns in vascular endothelial and SMCs of
apoE-/- mice, as compared with wild-type controls [263]. Reduced H3
histone methylation in peri-renal aortic tissue from all stages of
atherosclerotic human patients was recently reported [264].
Accelerated atherosclerosis by high levels of S-adenosyl homocysteine
in the plasma was associated with the activation of endoplasmic
reticulum stress through modulation of histone methylation [265].
Epigenetic changes involving both histone deacetylases and
methyltransferases were involved in the transcriptional control of
collagen type I gene in vascular SMCs in response to IFN-γ, leading to
repression of collagen synthesis, with subsequent impact on plaque

destabilization [266]. In monocytes, the proinflammatory phenotype
induced by oxidized LDL also involves epigenetic changes, revertible
by the histone methyltransferase inhibitor methylthioadenosine [267].

Conclusion
In this review, we have tried to outline the main enzymes connected

with the evolution of atherosclerosis, based on their association with a
particular event or metabolic pathway (summarized in the
supplemental Table 1). Definitely, we were unable to cover, even
superficially, in a limited space, all the significant enzymes and, not
willingly, some may have been left out. This is a huge domain to
describe, and, certainly, an open one, as new enzymes may be
discovered, like PCSK9, which evolved in a decade as an important
therapeutic target with inhibitors in Phase III trials. With the advent of
molecular biology, the last decades acknowledged an increased
understanding, at the finest structural level, of the mechanistic basis of
action and offered the opportunity for exciting pharmacological
approaches in the design of inhibitors. Few final remarks are due at
this point. The main achievements in the field still emerged from the
direct targeting of cholesterol metabolism, either from the biosynthetic
pathway (statins) or the transport processes (PCSK9 inhibitors). An
important aspect to be reiterated is that the latter enzyme was initially
discovered in connection with neurobiology. It is possible in the future
to uncover new functions of enzymes already known. A particular
attention needs to be paid to certain genetic diseases, in which
atherosclerosis develops indirectly, as in the case of progeria. Also, the
sphingolipids are coming toward the front of the stage, as critical
players, not simple bystanders. From the cellular types involved,
macrophage contribution is crucial, both to lipid processing and to
inflammation, as macrophage-specific knockouts of certain genes can
revert the effect of a general knockout in a murine atherosclerosis
model. From the studies reviewed above we can conclude that there is
a long and not always straight way for confirming the in vivo
therapeutic potential of an enzyme modulator proved beneficial in
vitro. The challenge is enhanced by the multifactorial genesis of
atherosclerosis. There seem to be no “magic bullet” to effectively target
the disease, but rather a synergy of complementary approaches. As
science progresses, novel approaches will emerge. Among these,
targeting the main enzymes involved in the atherosclerotic evolution
by genetic or pharmacological means remains a source of high
expectations. However, neither the genetic nor the pharmacological
approach has to be evaluated on its own. A correct appreciation should
take both into account and, more importantly, place the experimental
data in a significant biological context. From this review and,
moreover, from the plethora of data in the literature, one can
understand the importance of choosing a proper therapeutic target. To
this aim, many aspects should not be neglected, among them: the
existence of variants of different or common genetic origin; the
spatiotemporal distribution; the existence of natural inhibitors,
endogenous and exogenous; the cross-talk between the various
metabolic pathways, with their regulation; the lesional stage at which a
drug is expected to act. Extrapolation from in vitro and in vivo models
to clinical trials has proved disappointing many times, and in certain
cases, never too rare, dangerous. The sooner pitfalls and
misinterpretations will be detected, the better both for the benefit of
people and to reduce the economic burden associated with death end-
clinical trials.
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Enzyme Athero-
protective(+)/
atherogenic

(-)

Representative experimental data (with corresponding references)

Cholesterol
biosynthesis related
enzymes

HMG-CoA reductases (-) Inhibited by statins, which reduce LDL-cholesterol [5,6]

Squalene synthase (-) Inhibited by TAK-475, which reduces LDL-cholesterol [20]

Sphingolipid
metabolism related
enzymes

Serine palmitoyl

transferase

(-) Inhibition by myriocin led to increased HDL, decreased VLDL and LDL in apoE-/- mice [26]

Sphingomyelin
Synthase

(-) Knockout of SMS1 [43] or SMS2 [39] decreased pro-atherogenic NF-κB activation and reduced
atherogenic lipoproteins.

Sphingomyelinase (-) Acidic SMase knockout reduced lipid retention and atherosclerotic lesions [53]; neutral SMase
knockout reduced palmitate-induced inflammation [61]; alkaline SMase knockout blocked intestinal
cholesterol absorption [62]

Lipoprotein
metabolism related
enzymes

ACAT1, ACAT2 (-) ACAT2 knockout reduced cholesterol absorption, hypercholesterolemia and gallstones formation [78,
79]; ACAT2-/-/apoE-/- mice were highly resistant to atherosclerosis [80]

LCAT (+) Increased LCAT expression by infusion increased cholesterol efflux and normalized lipoproteins in
LCAT-/- mice [92]

Lp-PLA2 (-) Inhibition by RNAi [101] and selective inhibitors [102,103] reduced lipid accumulation and progression
of coronary atherosclerosis in various atherogenic experimental models

PCSK9 (-) Inhibition by alirocumarib reduced LDL levels [1]

Oxidative stress

related enzymes

NADPH oxidase (-) NOX1/4 inhibitor GKT136901 reduced ROS [119,120]; NOX1/2 inhibitor apocynin reduced aortic
lesions in apoE-/- LDLR-/- mice [121]

Nitric Oxide Synthase (+) Adenovirus-mediated iNOS gene transfer studies showed that local NO synthesis induced significant
proliferation of SMCs and intimal hyperplasia in rats [135]

Superoxide
dismutases

(+) SOD local delivery decreased the cuff-induced arterial neointima [138], accelerated endothelial
recovery and inhibited in-stent restenosis in the aorta of Watanabe rabbits [139]; mitochondrial SOD
protected apoE-/- mice against atherosclerosis [140,141]

Catalases (+) Overexpression retarded atherosclerosis development in apoE-/- mice [141]; dietary supplements
upregulated CAT expression in apoE-/- mice and reduced atherosclerosis [144,145]; CAT attenuated
non-dietary atherosclerosis in apoE-/- mice [146]

Glutathione
peroxidases

(+) Mimetic diphenyl diselenide reduced atherosclerotic lesions in LDLR-/- mice [153]

Heme oxygenase-1 (+) Inducers hemin±desferrioxamine reduced atherosclerotic lesions in LDLR-/- mice [164]

Paraoxonases (+) Reduced protein N-homocysteinylation, prevented accumulation of oxLDL, promoted cholesterol
efflux from macrophages [173], improved endothelial function [174]

Vascular
remodeling related
enzymes

Matrix
Metalloproteases

(-)/(+) Area of aortic calcified lesions was reduced in apoE-/-/MMP2-/- mice compared to apoE-/- mice
([192]); apoE-/-/MMP-3-/- and apoE-/-/MMP-9-/- mice had larger brachiocephalic artery plaques [193],
while lesion size was reduced in apoE-/-/MMP-12-/- mice [193]

Inflammation
related enzymes

Cyclooxygenase (-) COX-1 knockout in apoE-/- mice reduced platelet-vascular wall interactions and decreased lesions
[203]

Lipoxygenase (-) 12/15 LO knockout in macrophages impaired oxLDL-induced foam cell formation and endothelial
activation [216]

Posttranslational
modifications
enzymes related to
isoprenoid
metabolism

Farnesyltransferase (-) Inhibition by manumycin A reduced Ras activity and oxidative stress [231]; FPTIII reduced in-stent
restenosis in a Ras-independent pathway in rabbit model [233]; 3-allyl farnesol and lovastatin
promoted relocation of RhoB to the cytosolic compartment in vascular SMC [235]

Geranylgeranyl

transferase-I

(-) GGTI-286 inhibitor blocked interaction between monocytes and endothelium [239]

Epigenetic
modifications
related enzymes

Histone deacetylases (-) Panobinostat inhibitor reduced HIV-associated inflammation and atherosclerosis [251]
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DNA methylases (-) 5Aza, a DNMT inhibitor, reduced shear-stress induced inflammation and atherosclerosis in apoE-/-
mice [256]

Histone
methyltransferases

(-) Homocysteine-induced ER-stress can be inhibited by the histone methylase inhibitor
methylthioadenosine [267]

Table 1: Enzymes used as therapeutic targets in atherosclerosis.
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