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Abstract

Immobilization process is to optimize the operational performance of an enzyme for industrial applications. So far
different matrices have been described in the literature to improve the performance of the immobilized enzymes.
With the advent of nanotechnology, the nanomaterials because of their unique physico-chemical properties
constitute novel and interesting matrices for enzyme immobilization. The nanomaterials possess ideal characteristics
to equilibrate principal factors which determine biocatalysts efficiency, including specific surface area, mass transfer
resistance and effective enzyme loading. This review presents the current scenario and techniques in enzyme
immobilization. An overview of the main methods used to combine proteins/enzymes with nanoparticles is given in
the study. The advantages and disadvantages of nanoparticles as immobilization matrix are also discussed.

Keywords: Immobilization; Nanoparticles; Covalent attachment;
Adsorption; Crosslinking

Introduction
Enzymes are catalyst that catalysis many biochemical and chemical

reactions. They are universally present in plants and animals. Due to
their ease of production, substrate specificity and green chemistry
these biocatalyst are widely used in diverse sections. Enzymes have
extensive applications in food industries such as baking [1,2], dairy
products [3], starch conversion [4] and beverage processing (fruit,
vegetable juices, beer and wine) [5]. In textile industries, they have
found a special place due to their effect on end products [6]. In
industries such as paper and pulp making [7] and detergents [8], the
use of enzymes has become a necessary processing strategy. Some of
the major class of industries such as health care & pharmaceuticals [9]
and chemical [10] manufacturing have been increased due to the
catalytic nature of enzymes. Another major application of enzymes is
in waste management [11] especially for solid wastes treatment [12]
and waste water purification [13-15]. Past few years have marked the
significance of enzymes in production of biofuels such as biodiesel,
bioethanol, biohydrogen and biogas from biomass conversion [16].
However, all these desirable characteristics of enzymes and their
widespread industrial applications are often obstructing by their lack
of long-term operational stability, shelf life and by their recovery &
reusability. Enzyme immobilization is one of the strategies to
overcome these problems.

Enzyme immobilization
Immobilized enzyme was discovered in 1916 [17]. It was

demonstrated that activity of invertase enzyme does not get hampered
when it is adsorbed on a solid matrix, such as charcoal or an
aluminum hydroxide. This aspect led to the development of currently
available enzyme immobilization techniques. Initially immobilization
techniques used to have very low enzyme loadings, with respect to
available surface areas. In late 90s various covalent methods of enzyme

immobilization were developed. While enzyme immobilization has
been studied for a number of years, the appearance of recent published
research and review papers indicates a continued interest in this area
[18,19]. Currently commercial application of immobilized enzyme
have been enhanced as they are highly efficient [5,19]. Further, its
resistance to various environmental changes such as pH or
temperature has been increased during immobilization of enzyme on
solid support [20]. Compared to their free forms, immobilized
enzymes are generally more stable and easier to handle. In addition,
the reaction products are not contaminated with the enzyme which is
useful in the food and pharmaceutical industries. Moreover, in the
case of proteases, the rate of the autolysis process can be dramatically
reduced upon immobilization only, if a multipoint or multisubunit
immobilization is achieved, or if a favourable enzyme environment is
obtained [21]. Additionally, immobilization also improves many
properties of enzymes such as performance in organic solvents, pH
tolerance, selectivity, heat stability or the functional stability.
Increasing the structural rigidity of the protein and stabilization of
multimeric enzymes prevents dissociation-related inactivation [22,23].
The attached enzyme is again ready for the subsequent reactions
without the need for repeated, time consuming, and costly extraction
and purification procedures [22]. These alterations result from
structural changes introduced into the enzyme molecule by the applied
immobilization procedure and from the creation of a
microenvironment in which the enzyme works, different from the
bulk solution [24]. The main objective of enzyme immobilization is to
maximize the advantages of enzyme catalysis, which is possible by
using a support with low synthesis cost and high binding capacity [25].

The stability of a native enzyme (non-immobilized) is principally
determined by its intrinsic structure whereas the stability of an
immobilized enzyme is highly dependent on many factors, including
the nature of its interaction with the carrier, binding position and
number of bonds, the freedom of the conformation change in the
matrix, the microenvironment in which the enzyme molecule is
located, the chemical and physical structure of the carrier, the
properties of the spacer (for example, charged or neutral, hydrophilic
or hydrophobic, size, length) linking the enzyme molecules to the
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carrier, and the conditions under which the enzyme molecules were
immobilized. Hence the stability of the immobilized enzymes with
respect to time, temperature and other storage conditions and
experimental variables might be expected to either increase or decrease
on immobilization [26]. It has been found that many enzymes
immobilized by different immobilization techniques have higher
activity than the native enzymes. For instance, epoxy hydrolase
adsorbed on DEAE-cellulose by ionic bonding was more than twice as
active as the native enzyme [27], lipase—lipid complex entrapped in n-
vinyl-2-pyrrolidone gel matrix was 50fold more active than the native
enzyme [28]. Activation by immobilization is, however, often regarded
as an additional benefit rather than a rational goal of enzyme
immobilization. Activity retention by carrier-bound immobilized
enzymes is usually approximately 50%. At high enzyme loading,
especially, diffusion limitation might occur as a result of the unequal
distribution of the enzyme within a porous carrier, leading to a
reduction of apparent activity [29]. The conditions for high activity
retention are often marginal, thus often requiring laborious screening
of immobilization conditions such as enzyme loading, pH, carrier and
binding chemistry [26]. Changes in enzyme properties not necessarily
mean improvements, and in some instances a careful and extremely
mild immobilization protocol should be used to keep the good
properties of the utilized enzyme intact.

Immobilization of enzyme can be carried out by different methods;
broadly they are classified as physical and chemical. Physical methods
have weak interactions between matrix and enzyme, whereas in
chemical methods there is formation of covalent bond between the
support and the enzyme. In particular, the development and
applications of site selective protein immobilization have undergone
significant advances in recent years. It has been noticed that advances
in organic chemistry and molecular biology have led to the
development of some very powerful, efficient, site-specific, and
important applications of anchoring proteins onto supports [30-32].
These have been followed by the development of functional protein
microarrays, biosensors, and continuous flow reactor systems [31].

Methods of immobilization
The selection of mode of immobilization is very important to

prevent the loss of enzyme activity by not changing the chemical
nature or reactive groups in the binding site of enzyme. Considerable
knowledge for the nature of the active site of the enzyme will be
helpful. On the other hand, active site can be protected by the
attachment of protective groups, later on which can be removed
without any loss of enzyme activity. In some cases, this protective
function can be fulfilled by a substrate or a competitive inhibitor of the
enzyme. The most common procedures of enzyme immobilization are
adsorption, covalent coupling, entrapment and cross-linking [18].
Figure 1 gives the diagrammatic representation of the various methods
of immobilization.

Although various reviews are published on the immobilization
methods which give the detailed methodology, protocol of each
method and also its advantages and disadvantages. A brief discussion
of each method is summarized below.

Adsorption: Adsorption of enzymes onto insoluble supports is a
very old and simple method which has wide application and high
capability enzyme loading relative to other immobilization methods.
Enzymes can be immobilized by simply mixing the enzymes with a
suitable adsorbent, under appropriate conditions of pH and ionic
strength. After washing off loosely bound and unbound enzyme, the

immobilized enzyme is obtained in a directly usable form. Adsorption
process is based on vander Waal forces, ionic and hydrogen bonding
as well as hydrophobic interactions, which are very weak forces, but in
large number, impart sufficient binding strength.

Figure 1: Diagrammatic representation of the various methods of
enzyme immobilization.

Adsorbed enzymes can be protected from agglomeration,
proteolysis and interaction with hydrophobic interfaces [33]. The
choice of adsorbent particularly depends upon minimizing the leakage
of used enzyme. In order to prevent chemical modification and
damage to enzyme, the existing surface properties of enzymes and
support are need to be considered Care must be taken that the binding
forces are not weakened during use of unusual changes in pH or ionic
strength. The adsorption through physical method generally leads to
major changes in the protein microenvironment, and typically
involves multipoint protein adsorption between a single protein
molecule and a number of binding sites on the immobilization surface
[34]. The main disadvantage of this method is that the enzyme is easily
desorbed by factors like temperature fluctuations, changes in substrate
and ionic concentrations [35].

Covalent binding: Covalent immobilization involves the formation
of covalent bonds between the enzyme and the support matrix. The
functional groups present in the enzymes get linked to support matrix
as these functional group are not responsible for the catalytic activity.
The binding reaction must be performed under conditions that do not
cause loss of enzymatic activity, and the active site of the enzyme must
be unaffected by the reagents used. Covalent association of enzymes to
supports occurs owing to their side chain amino acids like arginine,
aspartic acid, histidine and degree of reactivity based on different
functional groups like imidazole, indolyl, phenolic hydroxyl, etc. [36].
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Peptide-modified surfaces when used for enzyme linkage results in
higher specific activity and stability with controlled protein orientation
[37]. Sometimes functional groups on the support material are
activated by certain reagents and enzyme is then coupled to the
support material via covalent linkage. Cyanogen bromide (CNBr)-
agarose and CNBr-activated-Sepharose containing carbohydrate
moiety and glutaraldehyde as a spacer arm have imparted thermal
stability to covalently bound enzymes [38,39]. The connection
between the carrier and enzyme can be achieved either by direct
linkage between the components or via an intercalated link of differing
length, which is called spacer. The spacer molecule gives a greater
degree of mobility to the coupled biocatalyst so that its activity can be
enhanced when compared to that of direct coupled biocatalyst.

Entrapment: It is defined as the restricted movement of enzymes in
a porous gel, yet keeping them as free molecules in solution.
Entrapment of enzymes within gels or fibers is a convenient method
for use in processes involving low molecular weight substrates and
products. However, the difficulty which large molecules have in
approaching the catalytic sites of entrapped enzymes precludes the use
of entrapped enzymes with high molecular weight substrates. The
entrapment process may be a purely physical caging or involve
covalent binding. Enzymes have been entrapped in natural polymers
like agar, agarose and gelatine through thermo reverse polymerization,
but in alginate and carrageenan by ionotropic gelation [40]. A number
of synthetic polymers like polyvinylalcohol hydrogel [41],
polyacrylamide [42] have also been investigated.

Cross-linking: This method involves attachment of biocatalysts to
each other by bi- or multifunctional reagents or ligands [40]. In this
way, very high molecular weight typically insoluble aggregates are
formed. Cross-linking is a relatively simple process. It is not a
preferred method of immobilization as it does not use any support
matrix. So they are usually gelatinous and not particularly firm. Since
it involves a bond of the covalent kind, biocatalyst immobilized in this
way frequently undergoes changes in conformation with a resultant
loss of activity. Still it finds good use in combination with other
support dependent immobilization technologies, namely to minimize
leakage of enzymes already immobilized by adsorption. The most
commonly used bifunctional agent for cross-linking is glutaraldehyde.
The reactive aldehyde groups at the two ends of glutaraldehyde react
with free amino groups of enzymes through a base reaction and have
been extensively used in view of its low cost, high efficiency, and
stability. The enzymes or the cells have been normally cross-linked in
the presence of an inert protein like gelatine, albumin, and collagen
and can be applied to either enzymes or cells. The main disadvantages
are the undesirable activity losses that can arise from the participation
of catalytic groups in the interactions responsible for the
immobilization. The cross-linking reaction is not easily controlled and
so it is very difficult to obtain large enzyme aggregates with high
activity retention. The gelatinous physical nature of the immobilized
enzyme preparations is a great limitation in many applications. The
more recently developed cross-linked enzyme aggregates (CLEAs) are
produced by simple precipitation of the enzyme from aqueous
solution, as physical aggregates of protein molecules, by the addition
of salts, or water miscible organic solvents or non-ionic polymers [43].
These physical aggregates are held together by non-covalent bonding
without perturbation of their tertiary structure that is without
denaturation. Subsequent cross-linking of these physical aggregates
renders them permanently insoluble while maintaining their pre-
organized superstructure and hence their catalytic activity. This
discovery led to the development of a new family of immobilized

enzymes: CLEAs. This type of immobilized enzyme is very effective
biocatalysts as they can be produced by inexpensive and effective
method. CLEAs can readily be reused and exhibit satisfactory stability
and performance for selected applications. The methodology is
applicable to essentially any enzyme, including cofactor dependent
oxidoreductases [44].

Although the basic methods of enzyme immobilization can be
categorized into a few different methods as mentioned above,
hundreds of variations, based on combinations of these original
methods, have been developed [40,45,46]. Correspondingly, many
carriers of different physical and chemical nature or different
occurrences have been designed for a variety of bio-immobilizations
and bio-separations [40,47].

Choice of support for immobilization
The characteristics of the matrix are important in determining the

performance of the immobilized enzyme system. Ideal support
properties include physical resistance to compression, hydrophilicity,
inertness toward enzymes ease of derivatization, biocompatibility,
resistance to microbial attack, and availability at low cost [48]. Several
natural polymer materials like cellulose, alginate, chitin, collagen,
carrageenan, chitosan, starch, sepharose, pectin, and other natural
polymer materials are commonly used as support materials [40].
Besides, natural polymers various synthetic polymeric materials are
also used as support as they possess good mechanical stability,
moreover they can be modified easily [49,50]. A variety of inorganic
supports are also used for the immobilization of enzymes, e.g.,
alumina, silica, zeolites, and mesoporous silicas [39,40,51]. Silica-based
supports are the most suitable matrices for enzyme immobilization in
industrial manufacturing of enzyme-processed products [39,52], as
well as for research purposes [53]. Carriers which have large surface
area always do a great help to obtain good immobilization efficiency.

Nanoparticles as immobilization matrix
Nanoparticles act as very efficient support materials for enzyme

immobilization, because of their ideal characteristics for balancing the
key factors that determine biocatalysts efficiency, including specific
surface area, mass transfer resistance, and effective enzyme loading
[54-57]. Diffusion problem is more relevant when we are dealing with
the macromolecular substrates, for such systems the nanoparticles are
the ideal candidates [58]. Moreover, the enzyme bound nanoparticles
show Brownian movement, when dispersed in aqueous solutions
showing that the enzymatic activities are comparatively better than
that of the unbound enzyme [55]. In addition, magnetic nanoparticles
possess additional advantage, can be separated easily using an external
magnetic field. Studies have shown that immobilization of enzymes to
the nanoparticles can reduce protein unfolding and can improve
stability and performance [55]. Various reviews on immobilization of
enzymes on different types of nanoparticles (metal nanoparticles,
metal oxide nanoparticles, magnetic nanoparticles, porous and
polymeric nanoparticles) have been published earlier [55,56,59,60]. A
few examples of nanoimmobilized enzymes are cited in this review.

Enzymatic immobilization on Au and Ag nanoparticles have been
studied using either as whole cells or isolated enzymes, which include
lysozyme [61], glucose oxidase [62], aminopeptidase [63], as well as
alcohol dehydrogenase [64]. Cruz et al. [65] reported the
Immobilization of enzymes S. Carlsberg and Candida antarctica lipase
B (CALB) on fumed silica nanoparticles for applications in

Citation: Ahmad R, Sardar M (2015) Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix. Biochem Anal Biochem 4:
178. doi:10.4172/2161-1009.1000178

Page 3 of 8

Biochem Anal Biochem
ISSN:2161-1009 Biochem, an open access Journal

Volume 4 • Issue 2 • 1000178



nonaqueous media and they observed catalytic activities were
remarkably high. Won et al. [66] immobilized acetylcholinesterase
onto magnetic glasses based on iron oxide/silica, for paraoxon sensing.
Ganesana et al. [67] performed the immobilization of
acetylcholinesterase on nickel nanoparticles and obtained a highly
sensitive detection method for organophosphate pesticides. Uygun et
al. [68] employed magnetic poly (2-hydroxyethyl methacrylate-N-
methacryloyl-(l)-phenylalanine) to immobilize α-amylase. They
reported a substrate affinity increases upon enzyme immobilization
and showed that a specific activity of 85% was maintained after 10
reuses. Khoshnevisan et al. [69] immobilized cellulase on magnetic
nanoparticles obtaining a smaller activity than for the free enzyme, but
at 80ºC the immobilized enzyme showed slightly greater activity. Lee et
al. [70] used amino-functionalized silica-coated magnetic
nanoparticles to immobilize trypsin. They applied this system to a
pressure-assisted digestion for proteome analysis. It was observed for
each of the experiments in which the magnetic nanoparticles were
employed an increased number of protein identification in
comparison with the experiment with free trypsin. Qiu et al. [71],
reported the construction of glucose biosensor using the amino-
functionalized Fe3O4@SiO2 nanoparticles covalently bond to ferrocene
monocarboxylic acid as the building block. The biosensor reached 95%
of the steady-state current within 10 s after the addition of glucose.
Recently in our lab we have reported the immobilization of enzymes
(Peroxidase, cellulase, trypsin and alpha amylase) on TiO2
nanoparticles. The immobilized enzymes show higher activity than
free enzymes. It also showed enhanced thermal stability compared to
its soluble counterpart at higher temperature [72-75].

All the advantages of immobilized enzymes on micron-sized
particles are inherited when nanomaterials are used as solid supports.
Broadly there are four main approaches to link a protein or enzyme to
the nanoparticles as shown in Figure 2.

Figure 2: Approaches to link enzymes to nanoparticles: (a)
electrostatic adsorption (b) Covalent attachment to the
nanoparticle ligand (c) Conjugation using specific affinity of
protein (d) Direct conjugation to the nanoparticles surface.

Electrostatic adsorption: The most widely used linkage approach
consists of electrostatic adsorption (Figure 2a). This is the simplest
approach and is already used routinely as an electron dense marker in
histology [76]. The interaction between the nanoparticle and protein
may be modulated by the pH or charge screening by controlling the
ionic strength of the medium.

Covalent attachment to the surface modified nanoparticles:
Another general method for nanoparticle–protein conjugation is
covalently linking a protein to the nanoparticle ligand (Figure 2b).
This approach has been greatly advanced by extreme control over the
surface chemistry of the nanoparticles. For example, a variety of
organic functional groups can be introduced to the surface using mild
conditions [77]. The popular labeling chemistry utilizes the covalent
binding of primary amines with sulfo-NHS esters or R-COOH groups
via reaction with EDC [77]. Nanoparticles labeled with NHS esters can
react to form covalent bonds with the primary amine of lysine on a
protein. In addition, nanoparticles coated with maleimide groups can
react with the thiol of cysteine on a protein. Oxide nanoparticles (TiO
iron oxide, Coper oxide, silver and gold oxide) can be easily modified
by Silanization yielding a modified surface exhibiting amino groups,
which can be used as adsorbent or as coupling sites for linking various
proteins.

Conjugation using specific affinity of protein: Nanoparticle–protein
conjugation can also be achieved by using specific labeling strategies
(Figure 2c). Example Streptavidin coated nanoparticles can selectively
bind biotin-labeled proteins and antibody coated nanoparticles
selectively bind to the specific protein [78].

Direct conjugation to the nanoparticles surface: A direct reaction of
a chemical group on the protein without the use of a linker is usually
desired if the particle is used as a biosensor where FRET or electron
transfer is used (Figure 2d). For Au and Ag nanoparticles, this can be
achieved by the Au-thiol or Ag- thiol chemistry where a protein with a
cysteine covalently bonds to an Au or Ag nanoparticle. The
conjugation requires incubation of the protein and the nanoparticle
together as the Au–S or Ag-S bond is strongly favored. Similarly, for
sulphur containing nanoparticles such as ZnS/CdSe, cysteine can
directly form a disulfide bridge with the surface S atom. Direct
linkages can also be achieved by His tags, which can attach directly to
Zn, Ni, Cu, Co, Fe, Mn atoms.

Advantages Disadvantages

Mass transfer resistance Cost of fabricational process

Effective enzyme loading Large scale application

High surface area Separation of the reaction
medium

(except magnetic
nanoparticles)

High mechanical strength

Diffusional problems minimization

Table 1: Advantages and disadvantages of using nanoparticles for
enzyme immobilization.

Some important new consequences arise when the size of the carrier
approaches nanodimensions. Mostly, these all work out in the favour
of using nanosized materials. Table 1 Summarizes the advantages and
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disadvantages of the use of nanoparticles for enzyme immobilization,
considering general aspects.

Present studies shows that different types of nanomaterial are
avalaible for enzyme immobilization for examples carbon nanotubes
(CNTs), nanoparticles, magnetic nanoparticles, mesoporous media,
nanofibers, nanocomposites, nanorods and sol–gel materials
containing nanometer-size particles and single-enzyme nanoparticles
[79]. However, the major problem for their application is their high
cost and complex supports preparation [80]. Strategies or protocols for
synthesizing the nanoparticles should be developed which are low cost,
ecofriendly and can be used for large scale synthesis.

Selected applications of immobilized enzymes
Industrial applications of immobilized enzymes include laboratory-

scale organic synthesis and analytical and medical applications [48,81].
Furthermore, since enzymes are able to catalyze reactions not only in
aqueous solutions but also inorganic media, immobilized enzymes can
catalyze organic synthesis [82]. DiCosimo et al. [5] mentioned many
uses for immobilized enzymes, as high-fructose corn syrup
production, pectin hydrolysis, debittering of fruit juices,
interesterification of food, fats and oils, biodiesel production, carbon
dioxide capture and, in most cases, it can be extended to “nano” sizes.
Table 2 shows few applications of nanoimmobilized enzymes.

Enzyme Nanoparticle Application References

β-Glucosidase (BGL) from Aspergillus
niger

Iron oxide Biofuel production [83]

nanoparticles

Superoxide dismutase (SOD) Nano Fe3O4 coated Biosensors [84]

on a gold electrode surface

α-Amylase Silica nanoparticles Formulation of detergent for
enhancing removal of starch
soils

[85]

Trypsin Nanodiamond prepared by
detonation (dND)

Proteolysis [86]

Lysozyme Chitosan nanofibers Antibacterial [87]

Mucor javanicus lipase Nano-sized magnetite Solvent-free synthesis of 3-
diacylglycerols

[88]

Lipases from C. rugosa and
Pseudomonas cepacia

Zirconia nanoparticles Resolution of (R,S)-ibuprofen
and (R,S)-1-phenylethanol,
respectively

[89]

Horseradish peroxidase (HRP) Magnetite silica nanoparticles Immunoassays [90]

Alcohol dehydrogenase from T. brockii
(TbADH)

Gold and silver Alcohol synthesis [91]

nanoparticles

Cholesterol oxidase Fe3O4 nanoparticles Analysis of total cholesterol in
serum

[92]

Haloalkane dehalogenase Silica coated iron oxide
nanoparticle

Production of fusion proteins
containing dehalogenase
sequences

[93]

Laccase Chitosan-magnetic
nanoparticle

Bioremediation of environmental
pollutants

[94]

Keratinase Fe3O4 nanoparticles Synthesis of keratin [95]

α-Amylase Cellulose-coated magnetite
nanoparticles

Starch degradation [96]

Β-Galactosidase Con A layered ZnO
nanoparticles

Lactose hydrolysis [97]

Lipase Fe3O4 nanoparticles Hydrolysis of pNPP [98]

Glucose oxidase Thiolated gold nanoparticle Estimation of glucose levelup to
300 mg/ml

[99]

Lipase Polystyrene nanoparticle Aminolysis, esterification, [100]
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trans-esterification

α-Chymotrypsin Polystyrene nanoparticles Proteolysis (cleaves peptide [101]

amide bonds)

Diastase Silica coated nickel
nanoparticle

Starch hydrolysis [102]

Bitter Gourd Peroxidase (BGP) TiO2 nanoprticles Phenol and dye removal [73]

Cellulase TiO2 nanoprticles Hydrolysis of Carboxy methyl
cellulose

[75]

Alpha amylase TiO2 nanoprticles Starch hydrolysis [72]

Alpha amylase TiO2 nanoprticles Starch hydrolysis and refolding [74]

Trypsin TiO2 nanoprticles refolding [74]

Alpha amylase Silver nanoparticles Starch hydrolysis [103]

Table 2: Enzymes immobilized on nanoparticles and their biotechnological applications.

Conclusions
Immobilization process has been used for enhancing enzyme

activity and stability in aqueous and non-aqueous media. Selecting and
designing the support matrix are important in enzyme
immobilization. Recently, the use of nanoparticles has emerged as a
versatile tool for generating excellent supports for enzyme stabilization
due to their small size and large surface area. It has been observed that
the stability and activity of enzymes increases when immobilized on
such materials. The nanomaterials are key components in the future
market of high technology. Nanoparticles strongly influence the
mechanical properties of the material like stiffness and elasticity and
provide biocompatible environments for enzyme immobilization.
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