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Commentary on
1. Cornett B, Snowball J, Varisco BM, Lang R, Whitsett J, et al. (2013)

Wntless is required for peripheral lung differentiation and pulmonary
vascular development. Dev Biol 379: 38-52.

2. Jiang M, Ku WY, Fu J, Offermanns S, Hsu W, et al. (2013) Gpr177
regulates 9 pulmonary vasculature development. Development 140:
3589-3594.

Two recently published papers demonstrated the Wntless gene's
critical role in the pulmonary epithelium; the gene functions in the
upstream Wnt signaling cassette to dictate Wnt ligand production
[1,2]. The phenotypes of the Wntless conditional knockout animals
are dramatic; the result is interesting, and it provides useful
information on Wnt source in the pulmonary system.

Wnt signaling plays important roles in the development of many
organs. Wnt ligands/proteins (such as Wnt7b) bind to the
corresponding receptor (Frizzled) and either of the co-receptors
(LRP5/6) to activate the “canonical” Wnt signaling pathway, which
stabilizes the central molecule β-Catenin to activate downstream
targets. Some Wnt ligands (such as Wnt5a) bind to other receptors to
activate the “non-canonical” Wnt signaling pathway, which is β-
Catenin-independent and activates Wnt/Ca2+ or the JNK pathway.
However, the fact there are 19 Wnt ligands with complementary
functions complicates the investigation on Wnt upstream signal
transduction.

Wntless (also known as EVI/GPR177/Sprinter) is a critical
chaperone protein required for all Wnt secretion except WntD in
Drosophila. By deleting the Wntless gene, different groups have made
seminal findings on Wnt secretion in embryogenesis, eyes, skeleton,
teeth, hair, and even cancer [3-8]. So far scientists have found that
Wntless plays a role only in supporting Wnt secretion. Additional
work using Porcupine - a gene that is involved in the lipid
modification of Wnt proteins and functions upstream of Wntless for
Wnt ligand production - or Porcupine chemical antagonists (such as
IWP or C59) will be helpful to confirm Wntless’s function in Wnt
secretion in a specific tissue or cell type [9,10].

In lungs, Wnt ligands regulate the cell proliferation, proximodistal
patterning, and branching morphogenesis [11-14]. According to the
literature, two major Wnt ligands from the pulmonary epithelium--
Wnt7b and Wnt5--have been proposed to affect lung development.
Wnt7b and Wnt5a most highly express in the distal lung bud tip,
which has the highest proliferation rate in the embryonic lung.
Notably the lung mesenchyme was also Wnt5a positively stained in
E12.5 embryos [15]. However other Wnt ligands playing
compensatory roles in regulating cell differentiation and
morphogenesis were also speculated.

To further decipher the complex interplays among epithelium,
mesenchyme and endothelium during lung morphogenesis, these two
groups generated Wntless conditional knockout animal models to
block the production of all 19 Wnt ligands specifically from the
epithelium or the mesenchyme. Basically both groups found that
blocking Wnt secretion from epithelium (Shh-cre driven), but not
from mesenchyme (Dermo1-cre driven), caused severe defects in
pulmonary vasculature development. The mesenchyme-specific
Wntless deletion embryos did not survive beyond birth (died at E14.5
in one study, and E15.5 to E17.5 in another); and neither group found
any noted phenotype in this strain. A sophisticated study showed that
Wnt/β-catenin signaling in intestinal development varied in location
and intensity significantly throughout developmental stages [16,17].
This phenomenon may be translatable to other tissues including the
lung [18]. So we might have missed some phenotypic changes later on
in the mesenchyme-specific Wntless-deficient lungs. However other
possibilities remain that could lead to no 16 lung phenotypic change in
Dermo1-Cre-driven wls deletion.

Nonetheless, the Shh-Cre-driven Wntless deletion in epithelium
caused perinatal death, and showed significant phenotypes before this
point. Both studies claimed that the mutant (Shh-Cre) lung
hemorrhage 20 phenotype was more severe than Wnt7b-null mutants
[19,20], which suggests other Wnt ligands compensated Wnt7b
deletion. The epithelium-specific Wntless deficient lungs had impaired
differentiation of distal epithelial cells, which led to lung hypoplasia.
However both groups found that the proximal to distal patterning at
the early stage (E14.5) was normal, which is in contrast to the finding
that β-Catenin conditional deletion with the same promoter (shh-Cre)
caused absence of trachea and lung [21]. Considering the fact that Wnt
ligands are short-distance effectors, we can speculate that
mesenchyme-derived Wnts could compensate Wnt abrogation in the
epithelium of the Shh-cre-driven Wntless knockout lungs during early
stages but not later. In our laboratory we also found that conditionally
knocking out Wntless in osteoblasts did not affect bone development
until one month of age [6]. Interestingly, blocking epithelial Wnts
caused the mesenchymal (but not epithelial) cells proliferated slower
in E14.5 lung, which indicates that mesenchyme depends on Wnts
from epithelium early on. This is in line with the previous finding that
Wnt7b (exclusively expressing in epithelium in the lung) regulates
lung vascular smooth muscle integrity through the canonical Wnt
signaling pathway [22]. The sensitivities of different tissues to Wnt
ligand concentration or Wntless expression may vary. Most of the
published data suggest only homozygous Wntless deletion could cause
phenotypic change. However heterozygously deleting Wntless in
myeloid cells had similar phenotypes with homozygotes in eyes [4].
Which Wnt ligand(s) are involved in pulmonary vasculature
development and how the imbalanced regulation functions in
epithelial-mesenchymal interaction requires more elucidation.
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Finally, both groups tried to look into the molecular mechanism
underlining the phenotypes. Corneet et al. showed data that up-
regulating non-canonical Wnt signaling could partly rescue
endothelial markers in Wntless-deficient lung explants [1]; and Jiang
et al. argued that canonical Wnt signaling plays a role in maintaining
vascular 1 smooth muscle cells through Klf2 [2]. Since Wntless
regulates both canonical and non-canonical Wnt ligands, one would
expect both Wnt signaling pathways (canonical and non-canonical)
might contribute to the process and multiple Wnt ligands are involved
in the fine tuning. There are complex interactions between canonical
Wnts and non-canonical Wnts as well. It was proposed that canonical
and noncanonical Wnts use a common mechanism to activate
completely unrelated coreceptors [23]. Non-canonical Wnt5a could
even activate canonical Wnt signaling at the presence of Frizzled4
(Fz4) and Lrp5 (not Lrp6), which is similar to how Norrin (another
Wnt-like protein/ligand) stabilizes β-catenin, and so does non-
canonical Wnt11 [24-26]. There is an interesting explanation of non-
canonical Wnts inducing canonical Wnt signaling: multiple Wnts
might act in a combination [27,28]. In fact, the canonical Wnt, Wnt7b
was also shown to cooperate with Wnt2 to promote foregut
organogenesis [29]. All these complex interactions between Wnt
ligands might lead to different observations, in some cases
contradictory. For example, morpholino knockdown of β-Catenin
resulted in enhanced epithelial branching, while a Wnt antagonist
(DKK1) treatment resulted in suppressed branching. The addition of
Wnt3a conditioned medium or LiCl strongly repressed growth and
proliferation of the lung and lacrimal gland [11,14]. A couple of recent
studies using mesenchymal stem cell (MSCs) to treat acute lung injury
also showed contradictory results, in terms of canonical Wnt signaling
contribution. One claimed that Wnt inhibition encouraged MSCs
engraft in vivo, another study showed Wnt activation actually
increased MSCs’ function [30,31]. So more work is required to further
demonstrate the roles of Wnt ligands during pulmonary vasculature
and other organ development.
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