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Introduction
We characterise ‘ergodic’ extremal quantum states of the fibre 

algebra invariant under the subgroup T of local translations of space-
time of the Poincare group P in terms of a non-commutative extension 
of entropy applied to the subgroup T. We also characterise the 
existence of T-invariant states by generalizing to the non-commutative 
case Kakutani’s work on wandering projections. This leads on to a 
classification of the structure of the local algebra O(D) by using a 
‘T-Twisted’ equivalence relation, including a full analysis of the T-type 
III case. In particular we show that O(D) is T-type III if and only if the 
crossed product algebra O(D) × T is type III in the sense of Murray-von 
Neumann.

Ergodic Theory in the Classical (Commutative) Case

In the commutative case, a general von Neumann algebra R is 
isomorphic to the set L∞(Z,v) of essentially bounded, measurable, 
complex-valued functions on the locally compact set Z with ν a positive 
regular borel measure. If G is a group of automorphism of R then G 
is by definition isomorphic to a group of automorphisms of L∞(Z,v) 
which we also denote as G. Projections P in the algebra R become, 
under the isomorphism, characteristic functions of borel subsets of Z. 
If g:P→Q and P is isomorphic to χE for the borel set E then Q is also a 
projection thus is isomorphic to χF for some borel subset F. Thus the 
group G induces a group of transformations of the σ-ring ℬ of borel 
subsets of Z.  

Let T be such a transformation which is measure preserving, 
then for any borel set E in ℬ, 1( ( )) ( )T E Eν ν− =  i.e., the measure ν is 
T-invariant. T is defined to be ergodic if it mixes the space. i.e., T-1(E)=
E modulo a null set implies either v(E)=0 or v(Z/E)=0. If T is ergodic
in this sense and the measure ν is T-invariant, then ν is defined to
be an ergodic measure [1]. It then follows that if Z is compact, ν is a
probability measure on Z which is ergodic, and T and its inverse are
continuous mappings, then this is equivalent to ν being an extreme
point of the invariant measures on Z. For if ℇ denotes the set of such
invariant probability measures, and ν is an extreme point of ℇ, then
any measurable set E with 0 ( ) 1Eλ ν< = <  allows the construction of
measures ( )1 2

1 1(*) (* ) and (*) * ( \
1

E Z Eµ ν µ ν
λ λ

= ∩ = ∩
−

such that

1 2(1 )ν λµ λ µ= + − ; a contradiction. Conversely if ν is a probability 
measure on Z which is ergodic, and 0<µ<v, then we have, for any Borel set 
A, 1( ) ( ) ( ) for some ( , )

A

A f x d x f L Zµ ν ν= ∈∫  and f is a T- invariant, positive 
function by the properties of probability measures. If f is not constant 

we can define Borel sets { } { }1 2; ( )  and ; ( )S x Z f x t S x Z f x t= ∈ < = ∈ >  for 
some positive real t. Both sets are invariant and non-trivial, thus they 
must both have measure 1; a contradiction. Hence f is constant and 
the measure is an extreme point since for any convex combination of 
measures, ν dominates these measures and this leads to the tautology 

(1 )  for some : 0 1.ν λν λ ν λ λ= + − < <  

Given a partition p of Z into measurable subsets {Aj, j=1,2,3….}, If 
Z is compact and has total measure equal to 1 then we can interpret the 
value µ(Aj) as the probability of the set Aj. The expression -logµ(Aj) is 
then a measure of the description length or Kolmogorov Complexity of 
the partition subset Aj. A measure preserving transformation such as T 
transforms the partition p into the partition Tp which is {TAj; j=1,2,3}. 
The entropy or, equivalently, the expected value of the Kolmogorov 
Complexity of the partition p is defined as ( ) log ( )j j

j
A Aµ µ−∑ . Since T

is measure preserving, the partitions p and Tp have the same entropy.

Hopf [2] was interested in the question of when a measure 
representable as a Lebesgue integral is invariant under a measurable 
transformation T. Hopf considers a partition of the measurable set into 
subsets and the effect of multiples Tk of T acting on those subsets. In 
operator theoretic language we can express this as follows Stormer [3]. 
We replace measurable sets by projections and the group {Tk; k∈Z} by 
a general discrete group G of automorphisms of a commutative von 
Neumann algebra R acting on a Hilbert space H which is implemented 
by the unitary representation g → Ug from G to the set of unitaries acting 
on H. Two projections H and K in R are Hopf equivalent if there is 
an orthogonal family of projections EJ in R and group elements gj∈ G 
with * and 

j jj g j g
j j

H E K U E U= =∑ ∑ . This equivalence leads to a partition
based criterion, ‘H-finiteness’, for the existence of a finite invariant 
measure. For this kind of orthogonal partition we can define the entropy 
as being derived from the partition weightings (all equal in this case). 
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Abstract
We develop further our fibre bundle construct of non-commutative space-time on a Minkowski base space. We 

assume space-time is non-commutative due to the existence of additional non-commutative algebraic structure at 
each point x of space-time, forming a quantum operator ‘fibre algebra’ A(x). This structure then corresponds to the 
single fibre of a fibre bundle. A gauge group acts on each fibre algebra locally, while a ‘section’ through this bundle is 
then a quantum field of the form { }( );A x x M∈  with M the underlying space-time manifold. In addition, we assume
a local algebra O(D) corresponding to the algebra of sections of such a principal fibre bundle with base space a finite 
and bounded subset of space-time, D. The algebraic operations of addition and multiplication are assumed defined 
fibrewise for this algebra of sections.
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Definition: The fibre algebra A(x) is a quantum operator algebra 
and thus always contains an identity operator I. If f is a quantum state 
of A(x) then by definition, f(I)=1. The support of f is the unique smallest 
projection E in A(x) such that f(E)=1 and is denoted Ef. 

We also require the following definition;

Definition: E is an α-invariant projection in A(x) if αg(E)=E ∀g∈T

The following result is well known in the finite dimensional (matrix 
algebra) case. For completeness we give a general proof.

Theorem 2: Let A(x) be a fibre algebra and : g → α(g) a representation 
of the translation subgroup T of the Poincare group P as (gauge) 
automorphisms of A(x). Assume there exists at least one state f of A(x) 
which is α-invariant. Then the support of f, Ef , is an invariant projection 
and f is a normal and ergodic state if and only if the representation 𝛼 
acts ergodically on the cut down algebra EfA(x)Ef

Proof: We start with the observation that assuming f is 
α-invariant implies that ( ( )) ( ) 1g f ff E f E g Tα = = ∀ ∈ ; we call such 
states ‘symmetric’. By uniqueness of the support of f it follows that 
Ef is an α-invariant projection. Let π be the Gelfand-Naimark-Segal 
(GNS) representation of A(x) induced by the state f on the Hilbert 
space H(f). We make the simplifying assumption for now that f is a 
faithful state; i.e., Ef=I, and revisit this assumption later. In this case 
the von Neumann algebra π(A(x)) has a separating-generating 
vector ξ and the representation 𝜋 is a *-isomorphism. Define the 
unitary group ( )( ) ( )g gU A Aπ ξ π α ξ=  on a dense subset of H(f), then 
Ug extends to a unitary on { }( ) ( ) ;  H f B Bπ ξ −= in the fibre algebra 
where {}- denotes closure of the set in the norm topology. The 
mapping U:g→ g is then a unitary representation of the translation 
group T and for B a quantum observable in the fibre algebra A(x) we 
have *( ) ( ( ))g g gU B U B g Tπ π α= ∀ ∈  i.e. the unitary representation U 
implements the automorphic representation α: g → α(g).

Consider now the involution mapping on π(A(x)) defined as A → A. 
* This induces an anti-linear mapping on a dense subset of the Hilbert 
space H(f); S: Aξ→ A*ξ. Moreover, this extends to a mapping with closed 
graph which we also denote by S. By the theorem of Tomita-Takesaki 

S has a polar decomposition 
1
2S J= ∆  such that J(A(x))J=𝜋(A(x))’; the 

commutant of the fibre algebra 𝜋(A(x)) [9]. If x=Bξ is in the domain of 
S, then it follows that Ugx also lies in the domain of S, and we have the 
relationship;

* * *( ) ( ) ( )g g g g g gU SB U B B B S B SU Bξ ξ α ξ α ξ α ξ ξ= = = = =  

This leads to the conclusion that, on the domain of S, we have 
UgS=SUg

Then we have;
1 1

* * * *2 2
g g g g g g g gS U SU U J U U JU U U= = ∆ = ∆  

By uniqueness of the polar decomposition, *  ; g gJ U JU J=  from 
this we deduce J and Ug commute for all g∈T

{ } ( ;gB U g Tπ ′∈ ∈A(x))  implies that JBJUg=UgJBJ for all g∈T

Thus { }; (gJBJ U g T π′ ′∈ ∈  A(x))

Conversely if { }; (gC U g T π′ ′∈ ∈  A(x))  then C=JBJ for some 
B∈π (A(x)) and

BJUg=UgJBJ implies JBUgJ=JUgBJ and thus BUg=UgB so that 
{ };gB U g T ′∈ ∈

With this definition it is then clear that if the two projections H and K 
in R are Hopf equivalent then they have the same entropy relative to an 
invariant measure. This idea is easily extended to the noncommutative 
case, as we will see later.

Noncommutative (Quantum) ergodic theory

The low energy regime beyond the standard model can be 
represented, we postulate, by linearised gravity with matter on a 
flat space-time manifold M. For this regime, invariance of quantum 
states to the Poincare group is a key symmetry and new results were 
presented [4]. Within the resulting fibre bundle construct defined 
there, our focus is on the local fibre algebra A(x) and the subgroup T of 
the Poincare group consisting of translations of space-time as a group 
of automorphisms of A(x). 

If A(x) is a fibre algebra and the group T of translations of space-
time a subgroup of the Poincare group, we define α: g → αg to be a 
representation of T as automorphisms of A(x). Let f be a faithful 
normal state of A(x) and define the ‘induced’ transformation.Since 
the vg(f)=f  αg this means that Vg(f) is also a normal state and Vg(f)
(A)=f(αg(A)) subgroup T is abelian, and the mapping g → v(g) is a 
group homomorphism, the set {v(g); g ∈ T} is a continuous group of 
commuting transformations of the dual space A(x)*. If f is a state of 
the algebra then define ℰ to be the weak* closed convex hull of the set 
{v(g)f; g ∈ T}. Then ℰ is a weak* compact convex set and each v(g): → . 
By the Markov-Kakutani fixed point theorem [5] it follows that ℰ has 
an invariant element. In other words, the group T has the fixed point 
property and thus is amenable. In summary, because T is an abelian 
group and locally compact it is an amenable group, since the closed 
convex hull of any quantum state of the system contains a T-invariant 
state [6]. This leads us to define the following;

Definition: Let A(x) be a fibre algebra and the group T of 
translations of space-time a subgroup of the Poincare group. Let α: g 
→ α(g) be a representation of T as automorphisms of A(x). The group 
representation α acts ergodically on A(x) if given a projection E in A(x), 
αg(E)= E ∀g∈T implies that E=0 or E=I.

This definition is a direct generalisation of the commutative case 
where A(x) is the set of essentially bounded measurable functions on 
a locally compact space with a regular borel measure, discussed above. 
We can also have the following non- commutative generalisation of an 
ergodic probability measure as an extreme point of the set of invariant 
measures; as first pointed out by Segal [7].

Definition: Let A(x) be a fibre algebra and α: g → α(g) a 
representation of the translation subgroup T of the Poincare group P 
as automorphisms of A(x). A quantum state f of A(x) is α-invariant if 
f(αg (A))= f(A)) ∀ A in A(x). If f is a normal (i.e., density matrix) state 
and an extreme point of the set of invariant states, then f is defined to 
be a T-ergodic state.

Note that the set of invariant states is a compact convex subset of 
the quantum state space of A(x) and is thus generated by its extreme 
points [8].There is a non-trivial invariant state for the amenable group 
T, as discussed earlier, thus there is an extremal T- invariant state of 
A(x). Since, by definition, the Hilbert space representation on which 
A(x) acts is separable, the algebra contains a faithful normal state and 
hence a T-invariant normal state. The norm limit of a set of normal 
states is again normal, and thus for a separable Hilbert space, the fibre 
algebra A(x) with the assumptions above always contains a T-ergodic 
state [9].
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that; We conclude that { } { }( ; ( ;  g gJ U g T J U g Tπ π ′ ′′∈ = ∈ 
 

 A(x)) A(x))  

The automorphic representation α: g  αg of T acts ergodically if and 
only if { }( ;gU g Tπ ′∈A(x)) is trivial, containing only the projections 
0 and I and thus consisting of the set of complex multiples of I. From 
the reasoning above it follows that the representation α: g → αg of T acts 
ergodically if and only if { }( ;gU g Tπ ′′ ∈A(x))  invariant is also trivial. 

If E is a projection in the set { }( ;gU g Tπ ′′ ∈A(x))  we can define a 

state , ( )
( )  

,E

E A
f A

E
ξ π ξ

ξ ξ
=  on the fibre algebra A(x). Then E Ef ξω π=   

is a state dominated by f ξω π=   and we have; 

2 2 2

2 2 2

, ( ) , ( ) , ( ) ( )
( ) (1 )   for ,

, , , ( )

, , ( )|| || || || || ||where  and 1
, || || || || || ||

A E A I E A
f A A

E I E

E I EE E

ξ π ξ ξ π ξ ξ π ξ
λ λ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξξ ξ ξλ λ
ξ ξ ξ ξ ξ

−
= = + − ∈

−

−−
= = − = =

A(x)

 

Thus f is an extremal invariant state if and only if the projection 
E=0 or I. The result follows for the support of f equal to 1. Finally, we 
need to extend the result to a general invariant state f with support 
Ef, 0<Ef<I. This follows from what we have already proved, since the 
restriction of f to Ef A(x)Ef is a faithful state, and a state extremal among 
the invariant states of the cut down algebra Ef A(x)Ef is also extremal 
among the invariant states of the full fibre algebra A(x). This follows 
from the fact that if f is a convex combination of states from the full 
fibre algebra, then each of them has a support less than or equal to Ef. 
In the next section we develop and prove a noncommutative version of 
a well-known result in classical ergodic theory and use it to characterize 
the existence of such symmetric states. 

Wandering Projections and Invariant Symmetry States
(Hajian and Kakutani, 1964) defined a wandering set as follows; [10]

Definition: Let (X, B, µ) be a measure space with finite measure; 
µ(X)<∞ and where B is the set of all measurable subsets of X. Let T 
be a bijective transformation of X such that both T and its inverse are 
measurable mappings. A wandering set for T is a measureable subset S 
of X such that the sets {Tnk(S)} are disjoint, for some infinite sequence 
of integers nk. 

Definition: Two measures ν and μ on the measure space X are 
said to be equivalent if they share the same null sets. A measure ν is 
T-invariant if v(T(E))=v(E) for all measurable subsets E of X.

With these definitions, showed that there is a finite T-invariant 
measure ν on X, equivalent to μ, if and only if there are no wandering 
subsets of X [10].

If now we consider an abelian von Neumann algebra R, then R is 
isomorphic to C (X) with X a compact stonean space of finite measure, 
and the positive, normal, regular borel measures on X correspond to 
the normal states of R. By Dixmier we can characterise these normal 
measures as being equivalent to measures which annihilate each 
nowhere dense subset of X [11]. It follows that if measures ν and μ 
on the measure space X are equivalent and measure ν is normal, then 
measure μ is also normal. 

If θ is a continuous automorphism of the abelian algebra R, 
isomorphic to C (X), then we can define the homeomorphism T of X by 

( ) ( ) for ( )f x f Tx f C Xθ = ∈ . By the result quoted above, if μ is a normal 
measure on X with support equal to X, there is a measure equivalent to 
μ which is T-invariant if and only if there are no wandering measurable 
subsets E of X. 

If such a set E did exist, such that the sets {Tnk(E)} are disjoint, for 
some infinite sequence of integers nk, then by regularity of μ we can 
assume that E is closed. Since X is a stonean space, E is both open and 
closed. Thus the characteristic function χE corresponds to a projection 
in the algebra R and the set of projections θnk(χE ) is an orthogonal set. 
From the algebraic perspective then we can say the following. Given 
an abelian von Neumann algebra R, an automorphism θ of R and a 
faithful normal state acting on R. Then there is a faithful normal 
θ-invariant state acting on R if and only if there are no non-trivial 
projections E in R such that for some infinite sequence of integers nk, 
the projections θnk(E) are mutually orthogonal. It can be easily shown 
that for a commutative algebra this condition on the set of projections 
is equivalent to the requirement that that there are no nonzero 
projections E with θnk(E) 0 in the ultraweak toplogy nk→∞ for some 
infinite sequence nk of integers. This new formulation now generalises 
easily to the non-commutative (quantum) case as follows.

Definition: Let R be a von Neumann algebra, G a group of auto 
morphisms of R. Then a nontrivial projection E in R is wandering if E 
is such that; gnk(E)→0 for some infinite sequence gnk in G. Convergence 
is defined in the weak operator topology.

If A(x) is a fibre algebra then it is a von Neumann algebra with 
trivial centre and is countably decomposable. Let α: g → αg be a group 
representation of the translation subgroup T of the Poincare group 
which is ultraweakly continuous. 

Theorem 3: There is a faithful normal translation invariant 
quantum state on the fibre algebra A(x) if and only if there are no 
wandering projections in A(x).

Clearly if E is a projection in A(x) such that gnk(E)→0 for some 
infinite sequence gnk in G and f is a faithful, normal α-invariant state, 
then f(E)=0, thus E=0. 

The proof of the converse is based on work by Takesaki on singular 
states [12]. We assume that there are no wandering projections in 
A(x). The fibre algebra A(x) has a faithful normal state f. By the fixed 
point property, applied to the set; ℰ=weak* closed convex hull of {v(g)
f; g∈T}, A(x) has an invariant state which we denote as h. We need to 
show that h is both normal and faithful. By Takesaki h has a unique 
decomposition h=hn+hs with hn a normal positive linear functional 
and hs a singular positive linear functional [13]. By uniqueness of the 
decomposition, both of these linear functionals are also α-invariant. 
Let S be the support of hn so that 0 .S I≤ ≤  If S≠ I we can choose a 
projection F with 0<F<I-E hs(F)=0 and hs(F)=0 [12]

Let λ=infg∈T(f  αg(F)). Since h=hn+hs, we have h(F)=0. Therefore 
λ=0. Thus there is a sequence gnk with. f  αgnk(F)→0 Since f is faithful and 
normal this implies that αgnk(F )→ 0 in the weak operator topology; i.e. F 
is a wandering projection. This contradiction shows that the support of 
hn equals I and hn is the required normal, faithful invariant state

The Structure of the Local Algebra O(D)
For each event point x in Minkowski space-time, we have a fibre 

algebra A(x) defined as a von Neumann algebra with trivial centre and 
a faithful representation as an algebra of operators acting on a separable 
Hilbert space. Thus O(D) is an associative principal fibre subbundle; 
associative in the sense that a Lie group (the translation subgroup of the 
Poincare group) acts on each fibre; a subbundle in the sense that only 
that subset of { }; M∈A(x) x with x∈D is of physical interest.

The local von Neumann algebra O(D) does not necessarily have a 
trivial centre; its structure is more complex in some ways. We assume 
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that the quantum system it represents has an energy operator with 
discrete countable eigenstates and we thus assume also that O(D) is 
separable. We propose to use the ideas of noncommutative ergodic 
theory to gain insight into the structure of O(D), as we now describe. 

Von Neumann introduced the idea of equivalence of measurement 
‘projection’ operators as a way of gaining traction on the structure 
of a general von Neumann algebra [9]. Much of this analysis centres 
around the question of whether or not the algebra possesses a finite 
trace, extending the idea of the trace of a finite matrix operator as the 
sum of its observable eigenvalues. This analysis was enhanced to take 
account of groups of (unitarily implemented) automorphisms of the 
algebra by Stormer [3]. This allows him to define a ‘G-equivalence’ of 
projections which generalises to the non-commutative quantum case 
the definition used in standard commutative ergodic theory [2]. One 
of us, extended this work to a characterisation of the tensor product 
of ‘G-type III’ algebras. As a result of this previous work we can now 
develop a classification of the structure of our local algebra O(D) [14]. 
We do this by applying these earlier results where the group concerned 
is now the subgroup T of local translations of space-time of the 
Poincare group P. 

Definition: Let α: g → αg be a group representation of the 
translation subgroup T of the Poincare group as a discrete group 
acting on the von Neumann algebra O(D). A representation π of O(D) 
acting on a Hilbert space H is covariant if there is a homomorphism 
g → Ug from G to the group of unitary operators on H with 

*( ( )) ( )g g gA U A U A O(D)π α π= ∀ ∈ . 

If φ is a normal state of O(D) then ϕ αg is also a normal state 
since each automorphism preserves the algebraic structure and hence 
preserves complete additivity. If S denotes the set of all normal states of 
O(D) then the direct sum { }; Sϕπ π ϕ= ⊕ ∈  of their Gelfand-Naimark-
Segal (GNS) representations is a faithful representation of O(D) as a 
von Neumann algebra acting on a Hilbert space H which is the direct 
sum of the GNS Hilbert spaces. If we define 

( )( ) ( ( )
gg S S gU A x A xϕ ϕ ϕ ϕ ϕ ϕ ϕ α ϕπ π α∈ ∈⊕ = ⊕



 as a mapping on each of 
the pre-Hilbert spaces for the GNS constructions, then Ug extends to 
a unitary operator on H and the representation { }; ,g gA g T A O(D)∈ ∈  
is a faithful normal representation of O(D). We can therefore assume 
that T acting on O(D) as a discrete group of automorphisms is unitarily 
implemented, if necessary.

Definition: Let α: g → αg be a group representation of the 
translation subgroup T of the Poincare group as a discrete group 
acting on the von Neumann algebra O(D). If E and F are projections in 
O(D) we say that E and F are T-equivalent if there is a set of operators 
{ }; ,g gA g T A O(D)∈ ∈  with ( )* * and F=g g g g g

g g
E A A A Aα= ∑ ∑ . 

Definition: We write this T-equivalence as E ≈ F and call it a 
T-twisted equivalence. In the special case that each Ag is a projection, 
this definition is a direct non-commutative generalisation of Hopf 
equivalence.

Definition: A projection F is defined to be T-finite if F contains 
no proper sub-projections which are T-equivalent to F. The algebra 
O(D) is defined to be T-finite, or T-Type II(1), if the identity of O(D) 
is a T-finite projection. O(D) is T-semifinite, or T-Type II(∞) if every 
projection in O(D) dominates a T-finite projection. O(D) is T-purely 
infinite, or T-Type III, if O(D) does not contain any T-finite projections. 

The T-type III case is the most difficult to analyse. In the T-type III 

case there is not even the ‘shadow’ of a trace. A T-invariant trace is a 
bounded faithful normal linear mapping τ: O(D)→ℂ with;

( ) ( ( )) ( ) ; , .gAB AB BA g T A B O(D)τ τ α τ= = ∀ ∈ ∈  

If τ is a trace, then by the earlier remarks we can assume that the 
group representation of T, as a discrete group, is unitarily implemented 
by the unitary representation U:g → Ug so that τ is automatically 
T-invariant. Further, if F is a T-finite projection and E~F in the sense 
of Murray and von Neumann then E ≤ F and E~F imply that E≤F 
and E≈F (using only the identity of the group). Thus E=F and F being 
T-finite implies F is finite.

Stormer established that O(D) is T-semifinite if and only if there is 
a faithful normal semifinite T-invariant trace on O(D).

The Crossed Product Algebra of O(D)
Assume (by taking a faithful representation if necessary) that O(D) 

acts on a Hilbert space H. Define the Dirac function εg to take the value 
1 at g and zero elsewhere on T. Then {εg; g∈T} is an orthonormal basis 
for the Hilbert space l2(T) Given l2(T) and H we can form the tensor 
product Hilbert space H ⊗ l2(T). Define;

1( )h g gh
U x xε ε −⊗ = ⊗  for xH g,h∈T

)( ) ( )g g gA x A xε α ε⊗ = ⊗  for A∈ O(D), g∈T

Then Uh extends to a unitary operator on H ⊗ l2(T)and the 
mapping h → Uh is a group homomorphism from the translation group 
T into the group of unitaries acting on H ⊗ l2(T). 

Similarly Φ(A) extends to a bounded linear operator on H ⊗ l2(T)
for all A in O(D) and the mapping h → Uh implements the automorphic 
representation h → αh. O(D1)⊗ O(D2)

The transformation Φ is an ultraweakly continuous *isomorphism 
of O(D) and it follows that Φ(O(D)) is a von Neumann algebra. Finite 
sums ( )

jg j
j

U AΦ∑ form a *algebra denoted (O(D)×T)0 which contains 

Φ(O(D)). The cross product algebra O(D)×T is defined as the closure 
of the *algebra (O(D)×T)0for the ultraweak operator topology. The 
crossed product algebra O(D)×T can be used to prove the following 
structural result.

Assume O(D1) and O(D2) are local von Neumann algebras in 
space-time regions D1 and D2 which are not space-like separated. Let 
G and H be discrete representations of the translation subgroup of the 
Poincare group as automorphisms of O(D1) and O(D2) respectively. 
Then if either O(D1) or O(D2) is G/H-purely infinite (G/H-Type III), 
the joint algebra O(D1)⊗ O(D2) is G×H-purely infinite (equivalently 
G×H-type III) under the action of the joint representation G×H of the 
translation group. If both O(D1) and O(D2) are G/H finite or G/H 
semifinite, then the same applies to the joint algebra O(D1) ⊗ O(D2). 
These results follow from the fact that; O(D1) ×G) ⊗ O(D2) × H) is 
spatially *isomorphic to (OD1 ⊗ OD2) × (G × H)[14].

A Symmetry of Types
In this part of our analysis of the structure of O(D) we find a pleasing 

symmetry for purely infinite type III algebras between the T-type of 
O(D) and the corresponding Murray-von Neumann type of its cross 
product algebra O(D)×T. First we have to prove the following key 
result. Recall that, by construction, the crossed product von Neumann 
algebra O(D) × T contains the embedded closed sub-algebra Φ(O(D)), 
isomorphic to O(D).
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Theorem 4: There is an ultraweakly continuous mapping, denoted 
Γ, from O(D) × T to O(D) such that the restriction 1

( ( ))| O D
−

ΦΓ = Φ ,

the inverse of the embedding of the algebra O(D); and the composite 
map : ( ) ( ( ))O D T O DΓ Φ × → Φ  is a continuous projection of norm 
one.

Proof: Continuing with the notation introduced earlier; the 
map : g gx x H Hε→ ⊗ → , where Hg is a closed linear subspace 
of H ⊗ l2(T), is both isometric and linear. Since the set { };g g Tε ∈
is orthonormal, the Hilbert space K=H ⊗ l2(T) is the direct 
sum of the Hg’s and every element x of K can be represented as 

2 2 with || || || ||g g g
g T g T

x x x xε
∈ ∈

= ⊗ = < ∞∑ ∑ .

If Eg is the projection from K onto Hg, and ( )g g
g

B U A= Φ∑  is

an element of ( )0
( )O D T× then straightforward arguments show 

that 1 1( )s t s ts t s t
E BE E U A E− −= Φ  Taking the weak closure, we have 

{ }1 1( )  with lim ; ( )s t s ts t s t
B O D T B B E B E E U D Eα α α

− −∈ × = = Φ . From 

the Kaplansky density theorem we can choose  with || || || ||B B Bα α ≤  
and the net 

1s t
Dα

−
 is then a bounded net in the ultraweakly compact ball 

of radius || B || [9]. It thus has a subnet converging to an element Ds-1t 
of O(D). From this we have the following expression;

1 1( )s t s ts t s t
E BE E U D E− −= Φ                (1)

In particular we have ( )e e e e eE BE E D E= Φ . If we define Γ(B)=De 
then clearly the mapping Γ is linear, and 1

( ( ))| O D
−

ΦΓ = Φ . Finally if 
Bα→B ultraweakly then EeB

αEe → EeBEe and the mapping Γ is ultraweakly 
continuous.

If B is in the kernel of Γ then De=0 from equation (1) above this 
implies that EsBEs=0 ∀s and thus B=0; the kernel of Γ is {0} and Γ is a 
faithful mapping. This shows that Γ has the required properties, and 
completes the proof.

This allows us to now prove the following key structural result.

Theorem 5: O(D) is T-type III if and only if the crossed product 
algebra O(D) × T is type III in the sense of Murray-von Neumann.

Proof: If O(D) is not T-type III then it contains a non-trivial 
T-finite projection E. Then it follows that if Φ is the identification of 
O(D) within the crossed product algebra O(D) × T then Φ(E) is finite 
in the sense of Murray-von Neumann. Thus O(D)×T is not type III. 
Conversely assume the crossed product algebra O(D) × T is not type 
III. From Theorem 4 we know that there is a faithful normal projection 
Γ of norm one from O(D) × T onto O(D). From Sakai [15] it follows that 
O(D) cannot be type III. Thus O(D)Z is semifinite for some projection 
Z in the centre of O(D). From Stormer [16,17] O(D)Z is T-semifinite 
thus O(D) cannot be T-type III. This completes the proof.

Conclusion
Through the experiment we explained fibre bundle construct of 

non-commutative space-time on a Minkowski base space.
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