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Abstract

Evaluation of fenitrothion resistance was realized in three populations of Culex pipiens collected in Southern
Tunisia between March 2002 and October 2005. It was not possible to considered bioassays tests to fenitrothion
in sample # 3 due to their control-level mortality. The RR50 were 27.1 in sample # 1 and 179 in sample # 2. All the
studied samples showed the presence of one or more esterases in their electrophoretic profiles except the sample #
3 which was sensitive to propoxur. The addition of Pb to fenitrothion bioassays indicated the involvement of CYTP450
in the recorded resistance. This result could be explained by the massive use of the permethrin in the control against
these insects in southern Tunisia. We also showed that the resistance to fenitrothion was correlated with the propoxur
resistance. These results indicate that modifications of the target, AChE1, can be involved in the recorded resistance.
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Introduction

The resistance of pathogen vectors that cause human or animal
diseases to insecticides affects both the economy and public health
globally: it requires increasing the amount of used insecticides and
developing new molecules or formulations (thus raising costs). It
makes the available products and vector control strategies inefficient,
thus leading to an increased prevalence of the pathogens and diseases
they transmit [1-3].

The resistance of a target species can be defined as an inheritance
reduction of susceptibility to an insecticide [2]. At the fundamental
level, this is an adaptation to the new environment selected by the
pressure exerted by one or more insecticides, according to a natural
selection process. Resistant individuals carry one or more gene
mutations (known as resistance alleles) encoding proteins that interact
with the insecticide. Thus, the mutated proteins prevent the insecticide
from reaching its target, for example by degrading it, or by modifying
this target allowing the insects carrying these mutations to survive
doses of insecticide normally lethal [4-11].

For years, the organophosphates (OPs) and synthetic pyrethroids
have been widely used in the mosquito control programs. Currently,
in addition to pyrethroid insecticides (permethrin and deltamethnin),
many OPs including fenitrothion insecticide were largely used in Culex
pipiens control.

This study reported the resistance of Culex pipiens to fenitrothion
(OP). The aim is to present the main mechanisms of resistance to
fenitrothion as well as the current situation in terms of resistance to
this insecticide.

Materials and Methods
Mosquito strains

Six strains of mosquitoes were used in this study: three field
populations of Culex pipiens collected in Southern Tunisia between
March 2002 and October 2005 (Table 1 and Figure 1), S-Lab reference
used as sensitive strain, SA2 and SA5 with overproduced esterases A2-
B2 and A5-B5, respectively.

Insecticides and synergists

Two insecticides were used for bioassays: the organophosphate
fenitrothion (98.5% [AI]), brought from laboratory Dr Ehrenstorfer,
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Figure 1: Geographic origin of Tunisian populations.

Germany) and the carbamate propoxur (99.9% [AI], Bayer AG,
Leverkusen, Germany). Two synergists were used to help detect
detoxification enzymes involved in resistance: S,S,S tributyl
phosphorothioate (DEF), an esterase inhibitor, and piperonyl butoxide
(PB), an inhibitor of mixed function oxidases.

Bioassay procedures

We used standard methods to do bioassays tests [12,13]. Data
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Code Locality Breeding site cc?l?ézt?;n
1 Tozeur Ditch Oct. 2005
2 Gabes Drain June 2005
3 Borj El-Khadra Water pond Mar 2002

Mosquito control (used insecticides) Agricultural pest

C: Chlorpyrifos ; T: Temephos ; Pm: Pirimiphos methyl ; F: Fenitrithion ; P: Permethrin ; D: Deltamethrin

Table 1: Geographic origin of Tunisian populations, breeding site characteristics and insecticide control.

Fenitrothion

Population| | C, in Slope RR,, LC,,in Slope RR,,
ug/l (a) + SE (a) ug/l (a) * SE (a)
3.3 3.19 1.3 (1.0- 243
S-Lab (1.7-6.3) | +0.94 ) 1.6) +0.26
1-Tozeur 91 1.31 27.1 10 1.01 7.7
(47-179)  +£0.17 (12.9-56.8) (5.0-21)  £0.14 | (5.3-11.2)
2.Gabes 801 34 179 601 3.40 451
(488-738) | +0.59  (89.5-359) (488-738)  +0.59 | (310-654)
(a) 95% ClI

Fenitrothion +DEF

control
Frequent (C, Pm, F, P, D) None
Frequent (C, Pm, P, D) None
Occasional (P) None
Fenitrothion +Pb
SR,, RSR LC,, in Slope
@ ugil (a) +SE RR, (a) | SR, (a) RSR
25 2.8 1.44 1.1 )
(1.2-5.2) (0.18-44) +0.93 (0.34-3.9)
8.8 35 3.6 1.31 1.2 24.6 213
(5.9-12.9) ’ (0.61-21) +0.45 | (0.35-4.6) (10.8-56.0) ’
1.0 0.40 367 5.06 127 1.6 14
(0.69-1.4) ’ (238-564) +1.76 | (36.2-446) (0.78-3.4) ’

RR50: Resistance Ratio at LC50 (RR50=LC50 of the population considered / LC50 of Slab); SR50, synergism ratio (LC50 observed in absence of synergist / LC50
observed in presence of synergist). RR and SR considered significant (P<0.05) if their 95%CI did not include the value 1.
RSR: Relative Synergism Ratio (RR for insecticide alone / RR for insecticide plus synergist).

Table 2: Fenitrothion resistance characteristics of Tunisian Culex pipiens in presence and absence of synergists DEF and Pb.

were analyzed by probit analysis [14] using a BASIC program [15].
We calculated the resistance ratios at the median lethal concentration
(LC50) and LC95 by comparing the lethal concentration values of
field populations and S-Lab strain. Synergism tests were similar to
the bioassay tests except that 0.5 ml of the desired concentration of
synergist was added four hours before adding the concentration of
insecticide to each cup.

Esterase assay

Total esterase activity in individual, frozen adult mosquitoes from
field populations was determined by starch electrophoresis according
to the method of Pasteur et al. [16,17].

Results

Fenitrothion resistance

The linearity of the dose-mortality response was accepted (p<0.05)
just for S-Lab. It was not possible to considered bioassays tests to
fenitrothion in sample # 3 due to their control-level mortality. The
RR50 were 27.1 in sample # 1 and 179 in sample # 2.

The additions of DEF to fenitrothion bioassays indicate that the
increased detoxification by the EST (and/or GST) played only a minor
role in the resistance in samples # 1. In fact, The SR was significantly
higher than that recorded in S-Lab in samples # 1 which showed
RR50>1 in the presence of DEE The tolerance was not decreased after
addition of DEF in sample # 2 (Table 2). The Pb had not a significant
effect on the fenitrothion resistance in S-Lab (SR50 = 1.16, p<0.05).
The SR50 was significantly higher than that recorded in S-Lab only
in samples # 1 (Table 2). The addition of Pb to fenitrothion bioassays
eliminated completely the resistance of sample # 1 (RR50=1.2, p>0.05,
RSR=21.3), indicating that the resistance mechanisms in this sample
were inhibited by Pb.

Cross-resistance of fenirtothion/propoxur

Mortality caused by propoxur ranged from 1% in samples # 2
which has the highest resistance rate to fenitrothion to 100% in samples
# 3 which was sensitive. Significant correlation was recorded between
mortality due to propoxur and the LC50 of fenitrothion (Spearman rank
correlation, (r) = -0.69 (P<0.01)). This was expressed by a percentage of
41% in samples # 1 which had a medium rate of resistance.

Esterase’s activities

All the studied samples showed the presence of one or more
esterases in their electrophoretic profiles except the sample # 3 which
was sensitive: A4-B4 (and / or A5-B5) which had the highest frequency
(59%), C1 (28%), A2-B2 (11%), and B12 (3%).

Discussion

Its lack of selectivity towards non-target wildlife combined with a
probable risk of toxicity to humans has prevented its use on a larger
scale. High resistance levels were demonstrated by our two studied
samples. Moderate resistance has been detected in Brazil in some wild
populations of Aedes aegypti by Macoris et al. Similarly, resistances
have been found on Aedes aegypti against OPs, including fenitrothion
in many Caribbean islands [18]. Hidayati et al. [19] showed that level
of resistance to fenitrothion could be the result of repetitive exposure
with malathion which is the same insecticide class. Similar results
were recorded by Corena et al. [20] who reported a cross-resistance to
temephos and three other OPs insecticides (fenitrothion, fenthion and
malathion).

Observation of insecticide resistance in a vector population is not
necessarily associated with treatment failures. Indeed, the resistance
must be widely distributed among the target population in order to
have a visible operational impact. In addition, some insecticides have,
in addition to their lethal action, a repellent action. For permethrin,
for example, the major effect of which is repulsion, resistance can have
only a limited effect on the overall effectiveness of the intervention.
However, it is essential to detect as soon as possible the appearance of
resistance, in order to allow operators to adapt their control strategy.

Our study detected many esterases probably involved in the recorded
resistance to fenitrothion (OP). The involvement of these enzymes in
the OPs resistance was confirmed on Culex pipiens and other insects
species by many previous studies [5,21-23]. Esterase’s activities showed
the implication of many esterases in resistance of studied populations.
However, many previous studies observed elevated esterase levels, but
found no correlation with resistance [24-29].

The addition of Pb to fenitrothion bioassays indicated the
involvement of CYP450 in the recorded resistance. This result could
be explained by the massive use of the permethrine in the control
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against these insects (Table 1). Our study is in agreement with previous
publication on correlation between cytochrome P450 enzymes and
resistance to pyrethroids [30]. Multidisciplinary insect resistance
studies are needed to determine how resistance to an insecticide may
develop after exposure to another family of pesticides, and whether
complementarities exist between these mechanisms of detoxification.

We also showed that the resistance to fenitrothion was correlated
with the propoxur resistance. These results indicate that modifications
of the target can be involved in the recorded resistance. The involvement
of AChEI in OPs insecticides was confirmed in several mosquito
species [31].
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