
 Research Article Open Access

Zeng et al., J Health Med Informat 2017, 8:5
DOI: 10.4172/2157-7420.1000295

Volume 8 • Issue 5 • 1000295
J Health Med Inform, an open access journal
ISSN: 2157-7420

Journal of
Health & Medical InformaticsJo

ur
na

l o
f H

ealth & Medical Inform
atics

ISSN: 2157-7420

Keywords: Heterogeneous data; Data integration; High-dimensional
data; Relational database; NoSQL database

Introduction
Patient cohort identification is the selection of patient subgroups

satisfying predefined criteria from a large population in Electronic
Health Records (EHR) systems [1]. It is important for clinical trial
recruitment [2], outcomes research [3] and other research studies [4,5].
However, the process of identifying patient cohorts can be challenging
and expensive when the patient data come from heterogeneous sources.
Researchers have developed automated tools and systems to query
patient cohorts from disparate data sources [6-10].

The existing cohort identification tools use SQL-based relational
databases as the database model for managing patient data. However, one
limitation of SQL databases is the restriction on the maximum number
of columns that can be stored in a table. As a result, a single table may
not be sufficient to store patient data with extremely high dimensions
(or a large number of data elements). In such cases, splitting data into
multiple tables is an alternative strategy. However, such splitting may
cause extra data loading effort and affect query performance for data
elements across multiple tables. NoSQL databases may provide a better
choice to handle such high dimensional patient data.

This paper provides an evaluation on SQL and NoSQL approaches
for patient cohort identification across multiple data sources. We
compare three patient cohort identification systems, utilizing MySQL,
Mongo DB and Cassandra as the backend database, respectively. We use
eight de-identified patient datasets from the National Sleep Research
Resource to compare the performance of data loading and querying
using these three systems.

Background
National sleep research resource (NSRR)

Funded by the National Heart, Lung and Blood Institute, NSRR was
designed to share de-identified sleep data obtained from NIH-funded
cohort studies and clinical trials with the sleep research community
[11]. NSRR provides a web-based data portal [12] that aggregates and
organizes signal and clinical data from over 26, 000 patient subjects.
NSRR has over 2, 500 registered users since it’s launching in 2014. Up

to date, over 80 terabytes of data have been downloaded by the sleep
research community.

Clinical data in NSRR are formatted in comma-separated values
(CSV) files by patient visits. Each patient visit has a corresponding CSV
file with all the clinical data elements collected for this visit. Note that an
NSRR dataset may involve one or multiple visits. For example, the SHHS
dataset has two patient visits: shhs1 (1, 266 data elements) and shhs2 (1,
302 data elements); the CHAT dataset has two visits: baseline (2, 897
data elements) and follow up (2, 897 data elements); and the CFS dataset
has a single visit: visit5 (2, 871 data elements).

Specific challenges for identifying patient cohorts from
heterogeneous sources

High-dimensional data: Dealing with high-dimensional data is
one of the challenges for patient cohort identification using relational
databases due to the limitation of the maximum number of columns
in a table. For example, MySQL has a hard limit of 4, 096 columns per
table, but the actual maximum number for a given table may be even
less considering the maximum row size and the storage requirements
of individual columns [13-27]. High-dimensional data (or column-
intensive data), if exceeding a single table’s capacity, need to be split
into multiple tables. For instance, in the CFS dataset, the “visit5” table
needs to be split into 3 tables with the de-identified patient identifiers
to connect the separated tables (Figure 1). The consequence of such
splitting is that it would be more computationally expensive to query
data elements located in different tables since it involves costly join

*Corresponding author: Licong Cui, Institute for Biomedical Informatics and
Department of Computer Science, University of Kentucky, Lexington, USA, Tel:
(859) 257-3062; E-mail: licong.cui@uky.edu

Received November 27, 2017; Accepted December 04, 2017; Published December
05, 2017

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and
NoSQL Approaches for Cohort Identification from Heterogeneous Data Sources
in the National Sleep Research Resource. J Health Med Informat 8: 295. doi:
10.4172/2157-7420.1000295

Copyright: © 2017 Zeng N, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
Patient cohort identification across heterogeneous data sources is a challenging task, which may involve

a complicated process of data loading, harmonization and querying. Most existing cohort identification tools use a
relational database model implemented in SQL for storing patient data. However, SQL databases have restrictions on
the maximum number of columns in a table, which necessitates the breaking down of high dimensional data into multiple
tables and as a consequence affects query performance. In this paper, we developed two NoSQL-based patient cohort
query systems based on an existing SQL-based system for the cross-cohort query in the National Sleep Resource
Research (NSRR). We used eight NSRR datasets in our experiment to evaluate the performance of the NoSQL-
based and SQL-based systems in data loading, harmonization and query. Our experiment showed that NoSQL-based
approaches outperformed the SQL-based and are rather promising for developing patient cohort query systems across
heterogeneous data sources.

Evaluation of Relational and NoSQL Approaches for Cohort Identification
from Heterogeneous Data Sources in the National Sleep Research Resource
Ningzhou Zeng1, Guo-Qiang Zhang1, Xiaojin Li2 and Licong Cui1*
1Institute for Biomedical Informatics and Department of Computer Science, University of Kentucky, Lexington, USA
2Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, USA

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 2 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

widely used JSON (JavaScript Object Notation) representation
to include additional types such as int, long, date, floating point
and decimal 128. BSON documents contain one or more fields
and each field contains a value of a specific data type, including
arrays, binary data and sub-documents. Documents that share a
similar structure are organized as collections. One can think of
collections as being analogous to tables in a relational database:
documents are similar to rows and fields are the equivalence of
columns.

2)	 Cassandra Database System: Apache Cassandra [33] is another
free and open-source distributed NoSQL database management
system, which is designed to store large amounts of data from
multiple servers. Cassandra can be considered as a hybrid of key-
value-and column-based NoSQL database.

•	 Cassandra Query Language (CQL): CQL is a query language for
Cassandra database. It enables users to query Cassandra using a
language similar to SQL. Language drivers are available for Java
(JDBC), Python (DBAPI2), Node.JS (Helenus), Go (gocql) and
C++ [34].

•	 Cassandra Data Model: Cassandra consists of nodes, clusters and
data centres. A group of nodes or even a single node is a cluster and
a group of clusters is a data centre. It provides support for clusters
across multiple data centres. Cassandra is a combination of key-
value and column-oriented database management system. The
main components of Cassandra data model are keyspace, tables,
columns and rows. A key space in Cassandra is a namespace that
defines data replication on nodes. A cluster contains one key space
per node. A table is a set of key-value pairs containing a column
with its unique row keys. Rows are organized into tables. The first
part of primary key of a table is partition key, which clusters the
rows by the remaining columns of the key.

Materials and Methods
Clinical data from eight datasets in NSRR [12] are used as data

sources in this paper, including Sleep Heart Health Study (SHHS) [13-
15], Childhood Adenotonsillectomy Trial (CHAT) [16-18], Cleveland
Family Study (CFS) [19-21], Heart Biomarker Evaluation in Apnea
Treatment (HEARTBEAT) [22], Study of Osteoporotic Fractures
(SOF) [23], MrOS Sleep Study (MrOS) [24], Hispanic Community
Health Study/Study of Latinos (HCHS) [25] and Multi-Ethnic Study of
Atherosclerosis (MESA) [26-30]. Table 1 summarizes the eight datasets
in terms of the patient visit, number of data elements and number of
patient subjects.

To evaluate SQL- and NoSQL-based approaches for patient cohort
identification, we adapt the existing NSRR Cross Dataset Query Interface
(CDQI) [31-35] based on MySQL and develop two NoSQL-based query
systems using MongoDB and Cassandra, respectively. Figure 2 shows
the general system architecture of the three systems. It consists of four
major components: (i) database management system; (ii) Ruby driver
for the database management system; (iii) query translation; and (iv)
web-based cross dataset query interface. The database component
serves as the data warehouse to store the actual datasets. The web-based
query interface receives queries composed by users, which are then
translated into the statements in the corresponding query language. The
Ruby driver then executes the translated query statements to retrieve
data from the database. After receiving the query results, the interface
presents them to the end users.

Figure 1: An example of splitting a table with a large number of columns into
multiple tables in MySQL due to the restriction on the table column count.

operation of tables and matching of the unique identifiers. Therefore,
the query performance may be significantly affected due to the split.

Heterogeneous data: Querying heterogeneous data to find patient
cohorts is also a challenging task, as disparate data sources may use
different representations to express the same meaning. For example,
in NSRR, different coding’s for patient gender are used in disparate
datasets: 1 means male and 2 means female in the SHHS dataset, while
0 represents female and 1 represents male in the CHAT dataset. Such
coding inconsistencies happen frequently as the number of disparate
datasets increases, thus need to be harmonized to guarantee accurate
queries.

Usually, there are two ways to handle coding inconsistencies. One
way is to harmonize the inconsistencies in the data loading step, where
the source data of each dataset need to be updated to share uniform
coding’s across all the datasets.

The other way is to address the inconsistency issue in the data query
step, where a mapping of the heterogeneous coding’s in each dataset to
the uniform coding’s needed to be incorporated when the patient cohort
identification system performs the query translation. In this paper, we
adapt the first way to perform harmonization in the data loading step so
that we can evaluate both data harmonization and query performance of
the SQL- and NoSQL-based systems.

NoSQL databases: NoSQL [28] databases have been rapidly
emerged, becoming a popular alternative to the existing relational
databases that can better store, process and analyse large-volume data.

Without a fixed data schema, NoSQL databases are more flexible
in dealing with various data sources and formats. NoSQL databases
have shown the potential in managing big biomedical data [29-31].
For example, Tao et al. [31] have developed a prototype query engine
for large clinical data repositories utilizing MongoDB as the backend
database. There are two main components in MongoDB: 1) MongoDB
Query Language; 2) MongoDB Data Model.

1) MongoDB Database System: MongoDB [32] is a free, open source
and cross-platform NoSQL database. It is a mature document-
oriented NoSQL database with well-written documentation and
large-scale commercial use. MongoDB also provides rich drivers
for multiple programming languages.

•	 MongoDB Query Language: As a NoSQL database, MongoDB
provides an expressive query language that is completely different
from SQL. There are many ways to query documents: simple
lookups, creating sophisticated processing pipelines for data
analytics and transformation, or using faceted search, JOINs and
graph traversals.

•	 MongoDB Data Model-Data as Document: The major feature
of MongoDB is that it stores data in a binary representation
called BSON (Binary JSON). The encoding of BSON extends the

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 3 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

Figure 2: System Architecture.

Dataset Visit (s) Number of data elements Number of subjects
SHHS shhs1 1, 266 5, 804

 shhs2 1, 302 4, 080
CHAT baseline 2, 897 464

 Follow up 2, 897 453
SOF visit8 1, 114 461
MrOS visit1 479 2, 911

 visit2 507 2, 911
HCHS sol 404 16, 415

 sueno 505 2, 252
MESA sleep 723 2, 237

Table 1: Summary information for each of the eight datasets.

Web-based query interface

We adapted the code base of the SQL-based NSRR CDQI in Ruby
on Rails (RoR) to develop the two NoSQL-based query interfaces. RoR
follows the model-view-controller architectural pattern, providing
rich interaction with different types of databases and supporting
HTML, CSS and JavaScript for developing interactive user interfaces.
The query translation, Ruby driver and backend databases were newly
implemented for MongoDB and Cassandra, respectively.

Query translation-dynamic generation of database query
statement

Each time a user initiates a query through the web-based interface,
the automated translation of this query (so-called query translation)
into specified database query statement is needed. We illustrate the
MongoDB-based query translation in the followings (MySQL-and
Cassandra-based are similar).

The dynamic query translation relies on predefined general
templates of MongoDB statement according to the types of queries.
For example, the general template for querying a range of values for a
numeric data element (or field) is predefined as:

Find (“dataset”=> <dataset.name>,

<field_1>=> {’$gte’=> <field_1_lower_value>,

’$lte’=> <field_2_upper_value>}, ...,

<field_n>=> {’$gte’=> <field_n_lower_value>,

’$lte’=> <field_n_upper_value>});

Where, the variables <dataset.name> and <field_n> represent the
specific dataset and the field that the user intend to query; and <field_n_
lower_value>, <field_n_upper_value> represent the user-specified
minimum value and maximum value of the field, respectively. All the
variables in the angle brackets can be replaced by real values to generate
the actual MongoDB statement. For instance, “finding patients in the
SHHS dataset aged (field_1) from 20 to 80 with height in centimetres
(field_2) between 145 and 188” will have the following values for the
variables in the template:

<dataset.name>: SHHS

<field_1>: age

<field_1_lower_value>: 20

<field_1_upper_value>: 80

<field_2>: height

<field_2_lower_value>: 145

<field_2_upper_value>: 188

Substituting the variables in the template with actual values obtains
the following MongoDB statement:

Find (“dataset”=> “SHHS”,

“age”=> {’$gte’=> 20, ’$lte’=> 80},

“height”=> {’$gte’=> 145, ’$lte’=> 188});

Ruby driver for the database management system

As illustrated in Figure 2, we utilize certain types of databases
(MySQL, MongoDB and Cassandra) as the data warehouse to store
disparate datasets. All the three database management systems used in
this study support a Ruby driver, which can seamlessly work with RoR
to interact with the database management systems. Take MongoDB as
an example, we use MongoDB Ruby driver [36] (version 2.4.1), which
enables the connection to the MongoDB data warehouse and executes
query statements to retrieve patient cohorts satisfying the query criteria.

Data modeling in NoSQL databases

Utilizing NoSQL databases require different data model compared
to SQL relational databases.

•	 MongoDB: The data schema for MongoDB in this study
consists of one database, called “nsrr” and one collection, called
“nsrrdata”. All the eight datasets were integrated into the collection of
“nsrrdata”. To differentiate records from different datasets, a key-value
pair with a key as “source” was inserted into each record to indicate the
source dataset of this record during the importing process. For those
datasets which have more than one visit, another key-value pair with a
key as “visitType” was inserted.

•	 Cassandra. The Cassandra database schema consists of a
single cluster, called “nsrrcluster”, a single keyspace, called “nsrrdata” and
eight tables corresponding to the eight datasets. Similar with MongoDB,
one extra column named “visitType” was added for those datasets
with more than one visit. A keyspace in Cassandra is a namespace that
defines data replication on nodes. The replication strategy for replicas
and the replication factor are properties from the keyspace. By selecting
the replication strategy for replicas, one can determine whether data is
distributed through different networks. In this work, we chose the Simple
Strategy [37] since it was performed in a single cluster. Furthermore, the
main purpose of this study is to compare performance rather than fault

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 4 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

datasets which are not consistent with this coding, the harmonization
was performed to update the source data with the harmonized coding.

Comparison of relational and NoSQL databases

We performed the comparison between SQL and NoSQL
databases in terms of the data loading, data harmonization and
query performance. For data loading, we compared the time spent on
importing data into MySQL, MongoDB and Cassandra, respectively.
For data harmonization, we compared the detected number of concepts
with coding inconsistency, detection time and harmonization time. For
query performance, we designed several sets of patient cohort queries
that are composed of a single query concept or multiple query concepts
to compare the query time. In the followings, each reported time was
obtained by performing the corresponding operation five times and
taking the average time.

Data loading: Table 3 shows the time taken for importing each
dataset into the three database systems. It took MongoDB a total of
419.2 seconds, MySQL 337.0 seconds and Cassandra 330.9 seconds, to
load 39, 342 records in the eight datasets. MongoDB took more time
than MySQL and Cassandra for data loading.

Figure 3 visually demonstrates the loading time of eight datasets
using MySQL, MongoDB and Cassandra, respectively.

Data harmonization: Although utilizing different databases, the
first two steps for data harmonization were identical in three systems.
We were able to detect coding inconsistency for the same number (43)
of concepts within eight datasets in five seconds. Table 4 shows the time
taken to perform data harmonization in each system. It took all the
three systems over 6 h to complete the harmonization. The runtime
complexities were similar since all these databases need to traverse
all the records and update the corresponding column names, values
(MySQL, Cassandra) or key-values (MongoDB). Cassandra required
the least time to harmonize the data as it provides the best performance
on the write operation.

recovery, so we set the replication factor as one. Another reason we used
a single cluster is that a larger number of replicas would also interfere
with the data loading time.

Data integration-loading and harmonization

Integration of disparate datasets into a data warehouse usually
involves data loading and data harmonization:

•	 Data loading procedure: In MySQL-based NSRR CDQI,
to load the NSRR datasets into databases, we need to perform data
pre-processing. A dedicated program is needed to split the data
“horizontally” into separate data files and store them in different tables.
The detailed procedures for a given dataset are as follows. First, the
program reads the CSV file of a patient visit in the dataset, calculates the
required number of tables and splits the CSV file into multiple smaller
CSV files. Then, the program reads the smaller files individually and
imports them into corresponding tables. Apparently, the limitation of
maximum table column count in MySQL does increase the complexity
from the data loading point of view. Even though each of the eight
datasets contains thousands of data elements or columns, importing
data into NoSQL databases is fairly straightforward, since (1) following
the data model mentioned above, we can easily import all eight datasets
into the NoSQL databases; and (2) no data split is needed.

•	 Data harmonization procedure: We take three steps to
harmonize coding inconsistencies before the data can be used for
query: (i) we run the inconsistency detection program to detect and
extract all the inconsistent coding among different datasets; (ii) we
manually harmonize these inconsistency coding into uniform codings
and maintain the mappings between them in a CSV file; (iii) we run
another program to update the harmonized coding in corresponding
tables stored in different databases. All the three query systems take
similar steps to perform data harmonization.

Results
In this section, we first present the results for data loading and

harmonization of the eight NSRR datasets, and then we present the
comparative evaluation of the three patient cohort query systems using
MySQL, MongoDB and Cassandra, respectively. All these evaluations
were conducted on a computer with Intel Core i5/2.9 GHz processor
and 8 GB RAM.

Data loading and harmonization

We integrated a total of 39, 342 patient records from eight NSRR
sleep datasets into MySQL, MongoDB and Cassandra, respectively.
Table 2 shows the numbers of tables needed for all three systems. MySQL
required twenty tables due to the limitation on the table column count,
while MongoDB only required one and Cassandra required eight.

We detected coding inconsistencies for 43 query concepts within
eight datasets. These coding inconsistencies were harmonized into
uniform codings. Take the heterogeneous codings for gender as an
example, the harmonized coding is: 1-male and 2-female. For those

Database system Number of tables

MySQL 20

MongoDB 1

Cassandra 8

Table 2: Numbers of tables needed for each database system to load the eight
datasets.

Figure 3: Data loading time comparison.

Datasets MySQL MongoDB Cassandra
SHHS 165.2s 207.7s 159.8s
CHAT 22.2s 29.3s 25.6s
CFS 22.2s 35.7s 29.8s

HEARTBEAT 1.9s 2.5s 2.2s
SOF 4.2s 4.5s 3.7s

MrOS 35.4s 39.1s 28.1s
HCHS 45.1s 56.9s 45.2s
MESA 40.8s 43.5s 36.5s
Total 337.0s 419.2s 330.9s

Table 3: Time to load eight datasets into MySQL, MongoDB and Cassandra,
respectively.

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 5 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

Query performance: To evaluate the query performance of
the SQL-and NoSQL-based systems, we conducted experiments on
performing patient cohort queries across the eight datasets. Each
cohort query consists of one or more query concepts. Three sets of
cohort queries were used. The first set of queries involved only one
concept, while the second set and the third set involved two and four
concepts, respectively.

Note that due to the limit of the table column count in MySQL, data
elements exceeding the limit need to be split into multiple tables. In
addition, there might be multiple data elements corresponding to the
same query concept. For instance, in the SHHS dataset, there are three
data elements mapped to the query concept Hypertension as follows.

•	 htnderv_s1: Hypertension Status based on 2nd and 3rd blood
pressure readings or being treated with HTN meds;

•	 srhype: Self-Reported Hypertension; and

•	 htnderv_s2: Derived Hypertension classification (based on
blood pressure measurements, history of HTN dx and medication use).

Such related data elements may be stored within the same table
or across multiple tables. Therefore, a query concept may involve data
elements within the same table or across multiple tables in the MySQL-
based query system. We refer to query concepts involving data elements
across multiple tables as cross-table query concepts.

Table 5 presents the time taken for each query using MySQL-based
system. The highlighted time indicates that the corresponding query
involves cross-table query concepts in the corresponding dataset. For
example, in the SHHS dataset, “Age”, “Asthma”, “Hypertension” and
“Time awake after sleep onset” are the cross-table query concepts.

As can be seen from Table 5, when querying Age in the CFS dataset,
the query time was relatively short, since Age (Tables 5-7) was a within-
table query concept. Even when querying two or more concepts at the
same time, as long as they were from the same table, the query times
were almost less than 0.1 seconds.

For the SHHS dataset, querying within-table concept Gender only
took 0.03 seconds. However, when executing “AND” logic queries
that contain two concepts involving different tables in MySQL, the
query took more than 3 seconds. The situation could get even worse
if the query consisted of multiple cross-table concepts. For instance,
four query concepts “Asthma”, “Gender”, “Hypertension” and “Time
awake after sleep onset” took about 12 seconds to complete. These
illustrate that the MySQL-based system encountered a dramatic query
time increase when query cross-table concepts. The major reason for
such increment is that when performing such queries, the traditional
relational database needs to perform costly JOIN operations.

Tables 6 and 7 show the query time taken for the MongoDB-based
and Cassandra-based systems, respectively. There is no highlighted
time in these two tables, since no data split operations were needed for
these two NoSQL databases. For the SHHS dataset, both MongoDB
and Cassandra achieved better performance when querying MySQL
cross-table concepts (see the highlighted times in Table 5); however,
for single-table concepts, the performance varied. For the CHAT
dataset, all the queries were the cross-table concepts in MySQL, the
performance of MongoDB and Cassandra were sometimes better than
that of MySQL, while sometimes worse. This may be because the CHAT
dataset contains a small number of patient records (917, see Table 1), in
which case MySQL was efficient in performing the JOIN operation on
data across tables.

Figure 4 shows the average time taken for each query using three
different database systems. We can see that both MongoDB and
Cassandra achieved consistently faster query performance compared to
MySQL. MongoDB demonstrated the best query performance. MySQL
performance was highly dependent on the query concepts.

Statistical evaluation of average query time: To evaluate the statistical
significance of the differences in the average query times. We conducted

Query concept MySQL

 SHHS CHAT CFS HEARTBEAT SOF MrOS HCHS MESA Average

Age 3.10s 1.53s 0.019s 0.56s NA NA 0.04s NA 1.04s

Gender 0.03s 0.06s 0.006s 0.02s 0.04s 0.21s 5.21s 0.18s 0.72s

Asthma 3.63s 0.06s 0.013s 0.009s NA 1.23s 0.039s NA 0.83s

Hypertension 3.33s 0.04s 0.011s 0.006s NA 1.64s 0.04s NA 0.84s

Time awake after sleep onset 3.59s 0.19s 0.12s NA NA NA NA 0.009s 0.97s

Weight 0.10s 0.05s 0.009s 0.02s NA 1.14s NA NA 0.26s

Gender and weight 0.05s 0.06s 0.007s 0.03s NA 1.29s NA NA 0.29s

Asthma and gender 6.51s 0.05s 0.01s 0.013s NA 1.46s 5.50s NA 2.25s

Asthma and hypertension 6.18s 0.12s 0.028s 0.007s NA 2.15s 0.07s NA 1.43s

Hypertension and time awake after sleep
onset 5.27s 0.12s 0.052s NA NA NA NA NA 1.81s

Asthma and gender and hypertension and
time awake after sleep onset 12.90s 0.31s 0.04s NA NA NA NA NA 4.42s

Asthma and weight and hypertension and
time awake after sleep onset 10.21s 0.21s 0.029s NA NA NA NA NA 3.48s

NA means unavailable information and Bold numbers indicate that corresponding query concept(s) involve data elements from multiple table

Table 5: Cohort query time for the MySQL-based system.

System Harmonization time

MySQL-based 6h 53m 53s

MongoDB-based 7h 9m 47s

Cassandra-based 6h 25m 15s

Table 4: Harmonization time for three systems.

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 6 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

Query concept MongoDB
 SHHS CHAT CFS HEARTBEAT SOF MrOS HCHS MESA Average

Age 0.15s 0.06s 0.05s 0.05s NA NA 0.15s NA 0.092s
Gender 0.06s 0.06s 0.05s 0.05s 0.04s 0.06s 0.11s 0.05s 0.06s
Asthma 0.45s 0.05s 0.06s 0.06s NA 0.08s 0.14s NA 0.14s

Hypertension 0.31s 0.05s 0.07s 0.07s NA 0.08s 0.14s NA 0.12s
Time awake after sleep onset 0.36s 0.11s 0.13s NA NA NA NA 0.12s 0.18s

Weight 0.10s 0.13s 0.04s 0.05s NA 0.05s NA NA 0.074s
Gender and weight 0.15s 0.04s 0.06s 0.05s NA 0.06s NA NA 0.07s
Asthma and gender 0.31s 0.08s 0.07s 0.05s NA 0.08s 0.12s NA 0.118s

Asthma and hypertension 0.50s 0.05s 0.06s 0.07s NA 0.08s 0.11s NA 0.145s
Hypertension and time awake after sleep onset 0.60s 0.60s 0.11s NA NA NA NA NA 0.44s
Asthma and gender and hypertension and time

awake after sleep onset 0.61s 0.68s 0.12s NA NA NA NA NA 0.47s

Asthma and weight and hypertension and time
awake after sleep onset 0.51s 0.63s 0.11s NA NA NA NA NA 0.42s

NA means unavailable information

Table 6: Cohort query time for the MongoDB-based system.

Query concept Cassandra

 SHHS CHAT CFS HEARTBEAT SOF MrOS HCHS MESA Average

Age 0.92s 0.11s 0.05s 0.11s NA NA 0.82s NA 0.402s

Gender 0.16s 0.06 0.04s 0.10s 0.06s 0.11s 0.92s 0.06s 0.19s

Asthma 0.95s 0.07s 0.08s 0.13s NA 0.05s 0.89s NA 0.36s

Hypertension 0.82s 0.19s 0.09s 0.15s NA 0.07s 0.81s NA 0.355s

Time awake after sleep onset 0.89s 0.22s 0.07s NA NA NA NA 0.26s 0.36s

Weight 0.39s 0.19s 0.09s 0.12s NA 0.11s NA NA 0.18s

Gender and weight 0.55s 0.10s 0.11s 0.09s NA 0.13s 1.11s NA 0.35s

Asthma and gender 0.83s 0.15s 0.14s 0.12s NA 0.14s 1.21s NA 0.43s

Asthma and hypertension 1.01s 0.12s 0.13s 0.16s NA 0.11s 0.12s NA 0.275s

Hypertension and time awake after sleep onset 1.32s 0.11s 0.19s NA NA NA NA NA 0.54s

Asthma and gender and hypertension and time awake
after sleep onset 1.22s 1.11s 0.22s NA NA NA NA NA 0.85s

Asthma and weight and hypertension and time awake
after sleep onset 1.04s 1.21s 0.25s NA NA NA NA NA 0.83s

NA means unavailable information

Table 7: Cohort query time for the Cassandra-based system.

Comparative pair t-value p-value

MySQL and MongoDB 3.5785 0.001676

MySQL and Cassandra 2.93414 0.007678

Table 8: T-test result for two independent means using average query time.

t-test using two independent means with 0.05 significance level and two-
tailed hypothesis. If the p-value is less than 0.05, then query performances are
considered significantly different. As shown in Table 8, we can see the p-values
are less than 0.05 for MySQL vs. MongoDB and MySQL vs. Cassandra. This
indicates that the two NoSQL-based systems achieved a significantly better
query performance than the MySQL-based system did.

Scalability: To evaluate the scalability of the SQL and NoSQL-
based system, we conducted experiments on performing patient cohort
queries across SHHS datasets with different scales. The rationale to
use the SHHS dataset for scalability evaluation was in two folds: (i)
it contained the largest number of data records among these eight

datasets; (ii) it contained data elements mapping to both within-table
and cross-table query concepts.

We scaled up the SHHS dataset by duplicating the original data
records by three, five and ten times, which are denoted as SHHS ×
3, SHHS × 5 and SHHS × 10 respectively. Note that these duplicated
data also had unique identifiers starting from the last identifier of the
original data record. The cohort queries were identical with those that
were previously used for evaluating the query performance.

Table 9 shows the time taken for each query in different scales using
the MySQL-based system. Each highlighted time indicates that the
corresponding query involved cross-table query concepts.

As we can see from Table 9, when querying “Gender” for these scaled
datasets, the query times were short, since “Gender” was a within-table
query concept. Even for a query with two or more concepts, the query
time remained short if these concepts were within-table (e.g., concepts
“Gender” and “Weight”). However, when performing cross-table
queries, the query times increased dramatically along with the scales.

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 7 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

Query concept MySQL

 SHHS SHHSx3 SHHSx5 SHHSx10

Age 3.10s 31.76s 87.16s 318.56s

Gender 0.03s 0.08s 0.56s 1.44s

Asthma 3.63s 33.17s 84.23s 312.09s

Hypertension 3.33s 32.14s 86.11s 306.06s

Time awake after sleep onset 3.59s 30.92s 81.42s 312.8s

Weight 0.10s 0.21s 0.49s 1.02s

Gender and weight 0.05s 0.56s 1.47s 0.03s

Asthma and gender 6.51s 57.05s 154.01s 585.13s

Asthma and hypertension 6.18s 50.12s 140.02s 581.43s

Hypertension and time awake after sleep onset 5.27s 50.71s 135.52s 580.53s

Asthma and gender and hypertension and time awake after sleep onset 12.90s 95.31s 258.04s 917.92

Asthma and weight and hypertension and time awake after sleep onset 10.21s 96.21s 252.79s 924.91s

Table 9: Cohort query time for the MySQL-based system.

Query concept MongoDB
 SHHS SHHSx3 SHHSx5 SHHSx10

Age 0.15s 0.12s 0.15s 0.25s
Gender 0.06s 0.06s 0.08s 0.10s
Asthma 0.45s 0.45s 0.56s 0.66s

Hypertension 0.31s 0.35s 0.47s 0.67s
Time awake after sleep onset 0.36s 0.29s 0.46s 0.56s

Weight 0.10s 0.13s 0.14s 0.21s
Gender and weight 0.15s 0.14s 0.16s 0.25s
Asthma and gender 0.31s 0.38s 0.47s 0.65s

Asthma and hypertension 0.50s 0.55s 0.56s 0.67s
Hypertension and time awake after sleep onset 0.60s 0.62s 0.66s 0.77s

Asthma and gender and hypertension and time awake after sleep onset 0.61s 0.68s 0.76s 0.86s
Asthma and weight and hypertension and time awake after sleep onset 0.51s 0.63s 0.65s 0.91s

Table 10: Cohort query time for the MongoDB-based system.

Query concept Cassandra
 SHHS SHHSx3 SHHSx5 SHHSx10

Age 0.16s 0.17 0.24s 0.30s
Gender 0.95s 0.97s 1.08s 1.23s
Asthma 0.82s 0.81s 1.09s 1.25s

Hypertension 0.89s 1.02s 1.27s 1.45s
Time awake after sleep onset 0.39s 0.49s 0.54s 0.82s

Weight 0.39s 0.49s 0.54s 0.82s
Gender and weight 0.55s 0.61s 0.71s 0.96s
Asthma and gender 0.83s 0.95s 1.04s 1.12s

Asthma and hypertension 1.01s 1.12s 1.13s 1.36s
Hypertension and time awake after sleep onset 1.32s 1.34s 1.37s 1.51s

Asthma and gender and hypertension and time awake after sleep onset 1.22s 1.25s 1.34s 1.66s
Asthma and weight and hypertension and time awake after sleep onset 1.04s 1.21s 1.25s 1.65s

Table 11: Cohort query time for the Cassandra-based system.

For instance, when querying Age, the query times were 3.10s,
31.76s, 87.1s and 318.56s for SHHS, SHHS × 3, SHHS × 5 and SHHS ×
10, respectively. The query time for concept Age was over 5 min when
the number of data records was ten times larger. The situation could get
even worse for queries consisting of multiple cross-table concepts. For
instance, it would take 917 seconds to query four concepts “Asthma”,

“Gender”, “Hypertension” and “Time awake after sleep onset”. These
illustrates that the MySQL-based system did not provide a decent
scalability for high-dimensional data in our case.

Tables 10 and 11 present the query times taken for the MongoDB-
based and Cassandra-based systems. For these NoSQL-based systems,
there was no need to split tables for a single dataset. We can see from

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 8 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

the tables, both MongoDB based and Cassandra-based system achieved
tremendously better performance when querying MySQL cross-table
concepts.

To better demonstrate the scalability of these three systems, Figures
5, 6 and 7 show the query times of different scaled SHHS datasets
for each query. In these figures, Q1 to Q12 are corresponding to the
queries in Table 9 from top to bottom. We can see that the increment
of query time along with the size of datasets for both MongoDB-based

and Cassandra-based system was small. These NoSQL-based systems
demonstrated a better scalability in terms of query performance
compared to MySQL-based system.

Discussion
Distinction with related work

Weber et al. [6] have developed a prototype Shared Health Research
Information Network (SHRINE) based on i2b2 for the federated query
of clinical data repositories. However, the i2b2/SHRINE system deals
with uniform data across different i2b2 instances, where these instances
share the same data structure. In this paper, we mainly focused on the
heterogeneous and high-dimensional data across disparate datasets,
where these datasets have different data structures.

Another related work is the MongoDB-based cohort query tool
for clinical repositories [31], where the tool can be used to query a
single data source. In this paper, we deal with multiple data sources and
explored another NoSQL-based approach.

Limitations

A limitation of this work is that the sizes of the NSRR datasets are
limited in the number of patient records (39, 342 records). Although it
was shown that the NoSQL-based systems outperformed the SQL-based
system on the NSRR datasets, it would be interesting to see how they
perform when the number of patient records gets extremely large and
to compare the actual storage required by different databases. Another
limitation is that we only explored two NoSQL database systems to
facilitate the patient cohort queries across disparate sources. Compared
with these two, how other NoSQL databases perform still needs further
investigation.

Conclusion
In this work, we developed two NoSQL-based patient cohort

identification systems, in comparison to a SQL-based system, to evaluate
their performance on supporting high-dimensional and heterogeneous
data sources in NSRR. Utilizing NoSQL databases, we overcame the
limitation of maximum table column count in traditional relational
databases. We successfully integrated eight NSRR cross-cohort datasets
into NoSQL databases, which largely enhanced the query performance
compared to the MySQL-based system, while maintained similar
performance for data loading and harmonization. This study indicates

Figure 4: Average query time for each query using MySQL, MongoDB and
Cassandra.

Figure 5: Query time of MySQL for SHHS Dataset with Different Scales.

Figure 6: Query time of MongoDB for SHHS Dataset with Different Scales.

Figure 7: Query time of Cassandra for SHHS Dataset with Different Scales.

Citation: Zeng N, Zhang GQ, Li X, Cui L (2017) Evaluation of Relational and NoSQL Approaches for Cohort Identification from Heterogeneous Data
Sources in the National Sleep Research Resource. J Health Med Informat 8: 295. doi: 10.4172/2157-7420.1000295

Page 9 of 9

J Health Med Inform, an open access journal
ISSN: 2157-7420 Volume 8 • Issue 5 • 1000295

that NoSQL-based systems offer a promising approach for developing
patient cohort query systems across heterogeneous data sources.

Acknowledgments

The authors thank the University of Kentucky Center for Clinical and
Translational Science (Clinical and Translational Science Award UL1TR001998),
as well as National Sleep Research Resource (NHLBI R24HL114473) for
supporting this work.

References

1.	 Shivade C, Raghavan P, Fosler-Lussier E, Embi PJ, Elhadad N, et al. (2013) A
review of approaches to identifying patient phenotype cohorts using electronic
health records. J Am Med Inform Assoc 21: 221-230.

2.	 Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, et al. (2014)
Automated clinical trial eligibility prescreening: Increasing the efficiency of
patient identification for clinical trials in the emergency department. J Am Med
Inform Assoc 22: 166-178.

3.	 Kurian AW, Mitani A, Desai M, Yu PP, Seto T, et al (2014) Breast cancer
treatment across health care systems: Linking electronic medical records and
state registry data to enable outcomes research. Cancer 120: 103-111.

4.	 Mathias JS, Gossett D, Baker DW (2012) Use of electronic health record data
to evaluate overuse of cervical cancer screening. J Am Med Inform Assoc 19:
e96-101.

5.	 Deng Y, Denecke K (2016) Patient records retrieval system for integrated care
in treatment of cervical spine defect. Springer 1: 10-25.

6.	 Weber GM, Murphy SN, McMurry AJ, MacFadden D, Nigrin DJ, et al. (2009) The
Shared Health Research Information Network (SHRINE): A prototype federated
query tool for clinical data repositories. J Am Med Inform Assoc 16: 624-630.

7.	 Zhang GQ, Siegler T, Saxman P, Sandberg N, Mueller R, et al. (2010) VISAGE:
A query interface for clinical research. AMIA Jt Summits Transl Sci Proc 2010: 76.

8.	 Bache R, Miles S, Taweel A (2013) An adaptable architecture for patient cohort
identification from diverse data sources. J Am Med Inform Assoc 20: 327-333.

9.	 Zhang GQ, Cui L, Lhatoo S, Schuele SU, Sahoo SS (2014) MEDCIS:
Multimodality epilepsy data capture and integration system. AMIA Annu Symp
Proc 2014: 1248-1257.

10.	Goodwin TR, Harabagiu SM (2016) Multi-modal patient cohort identification
from EEG report and signal data. AMIA Annu Symp Proc 2016: 1794-1803.

11.	Dean DA, Goldberger AL, Mueller R, Kim M, Rueschman M, et al. (2016)
Scaling up scientific discovery in sleep medicine: The National Sleep Research
Resource. Sleep 39: 1151-1164.

12.	https://sleepdata.org

13.	https://sleepdata.org/datasets/shhs

14.	Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, et al. (1997) The sleep heart
health study: Design, rationale and methods. Sleep 12: 1077-1085.

15.	Redline S, Sanders MH, Lind BK, Quan SF, Iber C, et al. (1998) Methods for
obtaining and analyzing unattended polysomnography data for a multicenter
study. Sleep 7: 759-767.

16.	https://sleepdata.org/datasets/chat

17.	Redline S, Amin R, Beebe D, Chervin RD, Garetz SL, et al. (2011) The
Childhood Adenotonsillectomy Trial (CHAT): Rationale, design and challenges
of a randomized controlled trial evaluating a standard surgical procedure in a
pediatric population. Sleep 11: 1509-1517.

18.	Marcus CL, Moore RH, Rosen CL, Giordani B, Garetz SL, et al. (2013).
A randomized trial of adenotonsillectomy for childhood sleep apnea. New
England J Med 25: 2366-2376.

19.	https://sleepdata.org/datasets/cfs

20.	Redline S, Tishler PV, Tosteson TD, Williamson J, Kump K, et al. (1995) The
familial aggregation of obstructive sleep apnea. Am J Respir Crit Care Med 1:
682-687.

21.	Redline S, Tishler PV, Schluchter M, Aylor J, Clark K, et al. (1999) Risk factors
for sleep-disordered breathing in children. Associations with obesity, race and
respiratory problems. Am J Respir Crit Care Med 1: 1527-1532.

22.	https://sleepdata.org/datasets/heartbeat

23.	https://sleepdata.org/datasets/sof

24.	https://sleepdata.org/datasets/mros

25.	https://sleepdata.org/datasets/hchs

26.	https://sleepdata.org/datasets/mesa

27.	https://dev.mysql.com/doc/refman/5.7/en/column-count-limit.html

28.	Kaur K, Rani R (2013) Modeling and querying data in NoSQL databases. IEEE
2013: 17.

29.	Schulz WL, Nelson BG, Felker DK, Durant TJ, Torres R (2016) Evaluation of
relational and NoSQL database architectures to manage genomic annotations.
J Biomed Inform 64: 288-295.

30.	Goli-Malekabadi Z, Sargolzaei-Javan M, Akbari MK (2016) An effective model
for store and retrieve big health data in cloud computing. Comput Methods
Programs Biomed 132: 75-82.

31.	Tao S, Cui L, Wu X, Zhang GQ (2017) Facilitating cohort discovery by enhancing
ontology exploration, query management and query sharing for large clinical
data repositories. AMIA Ann Symposiu Proceed 1: 2-4.

32.	Chodorow K (2013) MongoDB-The definitive Guide.

33.	Lakshman A, Malik P (2010) Cassandra: A decentralized structured storage
system. Operat Sys Rev 44: 3540.

34.	https://github.com/datastax/cpp-driver

35.	https://www.x-search.net/

36.	https://github.com/mongodb/mongo-ruby-driver

37.	http://www.datastax.com/doc-source/pdf/dse31.pdf

	Title
	Corresponding author
	Abstract
	Key words
	Introduction
	Background
	National sleep research resource (NSRR)
	Specific challenges for identifying patient cohorts from heterogeneous sources

	Materials and Methods
	Web-based query interface
	Query translation-dynamic generation of database query statement
	Ruby driver for the database management system
	Data modeling in NoSQL databases
	Data integration-loading and harmonization

	Results
	Data loading and harmonization
	Comparison of relational and NoSQL databases

	Discussion
	Limitations
	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10
	Table 11
	References

