Evaluation of *Terminalia chebula* Extract for Anti-Arthritic Efficacy and Safety in Osteoarthritic Dogs

Nichole Murdock1, Ramesh Gupta C1*, Natalia Vega1, Katie Kotota1, Jean Miller1, John Goad T1, Michelle Lasher A1, Terry Canerdy D1 and Sanyasi R Kalidindi2

1Murray State University, Murray/Hopkinsville, KY, USA
2Natreon Inc, New Brunswick, NJ, USA

Corresponding author: Ramesh Gupta C, Murray State University, Murray/Hopkinsville, Breathitt Veterinary Center, Toxicology Department, P.O. Box 2000; 715 North Drive, Hopkinsville, KY 42240-2000, USA. Tel: (270) 886-3959; Tel: (270) 886-4295; E-mail: rgupta@murraystate.edu

Rec date: Jan 18, 2016; **Pub date:** Jan 20, 2016

Copyright: © 2016 Murdock N, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The present investigation was undertaken to assess anti-inflammatory and anti-arthritic efficacy and safety of *T. chebula* extract (TCE) in moderately osteoarthritic (OA) dogs. Dogs with OA received either 500 mg placebo or 500 mg TCE twice daily for 150 days. On a monthly basis, dogs were given a full physical exam and were evaluated for arthritic pain (overall pain, pain upon limb manipulation, and pain after physical exertion), inflammation (erythrocyte sedimentation rate, ESR), and analysis of complete blood count (CBC) and serum biomarkers of liver (bilirubin, ALT, and AST), kidney (BUN and creatinine), and heart and skeletal muscle (CK) functions. Elbow and stifle joints were radiographed on day 0 and day 150 for evaluation of arthritic progression. Dogs given TCE showed significant (P<0.01) reductions in overall pain, pain upon limb manipulation, and pain after physical exertion by day 90, with maximum effects on day 150 (81.2%, 81.5%, and 84.2%, respectively). A marked reduction in ESR coincided with pain reduction in TCE-treated dogs, which was indicative of anti-inflammatory effect of TCE. Radiographic evidence also indicated slowed progression of OA in joints examined. No significant change occurred in physical parameters, CBC parameters, or serum biomarkers in dogs on placebo or treatment, which suggested that TCE was well tolerated. It can be concluded that TCE, by having many active principles (chebulagic acid, chebulinic acid, corilagin, hydrolysable tannoids, etc.) might have provided antioxidant, anti-inflammatory and anti-arthritic effects in dogs without causing any side effects.

Keywords: *Terminalia chebula* extract; Nutraceutical; Canine Osteoarthritis; Antioxidant; Anti-inflammatory; Anti-arthritic; Dietary supplement

Introduction

Osteoarthritis (OA) is a debilitating, degenerative, and painful inflammatory disease that affects the synovial joints, and is highly prevalent in dogs [1,2]. Currently, more than 20% of the adult and 80% of the geriatric dog population in the US (>80 million) suffer from OA [3]. A number of factors (injury/trauma, aging, excessive or lack of exercise, genetic predisposition, poor nutrition, obesity, and environmental factors) can contribute to OA in dogs [4-8]. Often, large breed dogs (German Shepherds, Labrador Retrievers, Siberian Huskies, Rottweilers, and others) are prone to develop OA (>45%) as compared to smaller breeds [9,10]. Common clinical signs of OA include limping, immobility, stiffness of joints, crepitus, periarthritis swelling, and pain upon manipulation of the joint and lameness [3,11-17].

Pathophysiology of OA is complex and it needs a brief discussion before selection of disease modifying anti-osteoarthritic agents [12,18-21]. OA is a chronic inflammatory joint disease that slowly progresses and causes degeneration of the cartilage, hypertrophy of bone at the margins, and changes in the synovial membrane that eventually results in pain and stiffness of joints. Cells in damaged joints release cytokines (IL-1β and IL-6), tumor necrosis factor-α (TNF-α), followed by stimulation of mitogen activated protein kinase (MAPK), matrix metalloproteinases (MMP-1, MMP-3, and MMP-13), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), phospholipase 2A, nitric oxide (NO), prostaglandin E2 (PGE2), and platelet activating factor (PAF). These cascading events and many others cause inflammation, subchondral bone thickening, breakdown of proteoglycans and destruction of cartilage [19,22-29].

In a clinical setting, veterinarians make a diagnosis of OA in dogs based upon physical examination and radiographic evidence [2,13,16,20,29,30]. CT scan and/or MRI findings reveal changes of the joint and cartilage degeneration, which are consistent with OA, but are limited to humans and experimental studies [31-33].

Currently, the management of OA in dogs is usually aimed at minimizing joint pain by reducing inflammation, slowing the progression of cartilage degeneration and improving cartilage repair, thereby increasing the joint’s flexibility and quality of life of the animal [17,20,29,34,35]. Currently, veterinarians have many options for managing the signs and symptoms of OA, including pharmaceuticals, nutraceuticals, nutrition, surgery, gene therapy, stem cell therapy, laser therapy, physical therapy, and acupuncture [9,15,29,34,41]. To alleviate OA associated inflammation and pain, veterinarians often use nonsteroidal anti-inflammatory drugs (NSAIDs), such as carprofen (Rimadyl), meloxicam (Metacam), firocoxib (Previcox), etc., [42,43]. Most NSAIDs inhibit the activity of the COX enzymes (COX-1 and COX-2) that produce prostaglandins [44], which are important factors for the pathogenesis of inflammation, swelling, pain and fever [42,45,46]. NSAIDs eliminate pain, but do not eliminate signs and symptoms of active disease, nor do they repair cartilage. Furthermore, the use of NSAIDs can be linked to side effects, such as hepatic and...
before initiation of any experiments, IACUC approval and owners' consent were obtained. Ten client-owned arthritic dogs (each weighing between 40-60 pounds) were selected for the present investigation based on the signs of arthritis (joint stiffness, lameness, and pain at the level of moderate severity) and radiographic evidence. Any arthritic dog having any other serious disease or complications related to hepatic, renal, or cardiovascular systems, or tumor/cancer, was not included in the study. Any dog infested with intestinal parasites (Giardia or Cryptosporidium) was also excluded. Throughout the study, dogs remained with their owners. Before initiation of any experiments, IACUC approval and owners' consent were obtained.

Animal treatment: Standardized *T. chebula* aqueous extract (AyuFlex) 500 mg capsules and Placebo capsules were supplied by Natreon, Inc., New Brunswick, NJ, USA. In Group-I, five dogs received placebo (500 mg twice daily); and in Group-II, four dogs received *T. Chebula* extract (500 mg twice daily; one capsule 1 h before morning meal, and one capsule 1 h before evening meal) for a period of 150 days. None of the dogs received any other treatment for a period of 3 to 4 weeks before or during the study period. The study was conducted double-blinded, that is the investigators or dog owners had no knowledge of the content(s) of white-colored capsules.

Physical examination: On a monthly basis, dogs were evaluated for physical parameters, including body weight (kg) using a digital scale, heart rate (beats/min) using a stethoscope, and rectal temperature (°F) using a thermometer. Respiration rate was auscultated and recorded using a stethoscope; however, some dogs could not be evaluated due to excessive panting, and therefore data could not be statistically analyzed and are not included in this paper.

Pain measurement criteria: On a monthly basis, each dog was evaluated for arthritis-associated pain (overall pain, pain upon limb manipulation, and pain after physical exertion) for a period of 5 months, using a Glasgow scoring system. In brief, overall pain, on a scale of 0-10, was graded as: 0, no pain; 2.5, mild pain; 5, moderate pain; 7.5, severe pain; and 10, severe and constant pain. Overall pain was measured on a scale of 0-10 because it provides a broad range for inclusion of daily activity. Pain after limb manipulation, on a scale of 0-4, was graded as: 0, no pain; 1, mild pain; 2, moderate pain; 3, severe pain; and 4, severe and constant pain. Pain after physical exertion, on a scale of 0-4, was graded as: 0, no pain; 1, mild pain; 2, moderate pain; 3, severe pain; and 4, severe and constant pain. Examination of each limb started with forelimbs and ended with rear limbs. The evaluation was focused on manipulation of the limbs in a forward, backward, and circular motion. The three main joints commonly evaluated were shoulder joint, knee joint, and stifle joint. Each dog was also evaluated for popping and cracking of the joint (crepitus) as well as vocalization due to pain. The present investigation was carried out on moderately arthritic dogs. A dog was considered moderately arthritic when exhibiting overall pain of about 5 on the scale of 0-10; pain after limb manipulation about 2 on the scale of 0-4; and pain after physical exertion about 2 on the scale of 0-4. Details of pain measurement criteria by observations have been described in our previous publications [13,16,30,62].

Radiographic evaluation: Arthritic joints (elbow and stifle) were evaluated radiographically using a DUOCON 1 VIDE MACHLETT (125 KVP) equipped with digital imaging software on day 0 and day 150.

Liver, kidney, heart and skeletal muscle functions: On a monthly basis, blood samples were collected in serum separator tubes from jugular vein or cephalic vein. Serum samples were assayed for liver (bilirubin, ALT, and AST), kidney (BUN and creatinine) and heart and skeletal muscle (CK) functions, using a Beckman AU480 Chem Serum Analyzer (Irving, TX, USA).

Blood analysis for complete blood count (CBC) and erythrocyte sedimentation rate (ESR): On a monthly basis, blood samples were collected in EDTA tubes from jugular vein or cephalic vein, and assayed for complete blood count (CBC) with white cell differential, using the Sysmex XT 2000iV system (Mundelein, IL, USA). Blood samples were also assessed for erythrocyte sedimentation rate (ESR) using a Sedi-RateTM ESR System to measure the level of inflammation.

Statistical analysis: Data were statistically analyzed for Mean ± SEM and Analysis of Variance (ANOVA) coupled with Tukey-Kramer multiple comparison test for significance (Alpha=0.05) using NCSS9 software.

Results

Data presented in Table 1 show the results of body weight, heart rate and body temperature of dogs receiving placebo and *T. chebula* extract (TCE). At no time point did dogs in either group show a significant difference in body weight, heart rate, or body temperature, compared to day 0 (P>0.05).
Table 1: Effects of placebo or *T. chebula* extract on physical parameters in arthritic dogs. No statistically significant difference from day 0 (P>0.05).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control/ Treated</th>
<th>Day 0</th>
<th>Day 30</th>
<th>Day 60</th>
<th>Day 90</th>
<th>Day 120</th>
<th>Day 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>28.49 ± 1.48</td>
<td>28.59 ± 1.60</td>
<td>27.66 ± 1.78</td>
<td>28.76 ± 1.35</td>
<td>28.14 ± 1.49</td>
<td>28.39 ± 1.31</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>24.20 ± 2.05</td>
<td>24.24 ± 2.28</td>
<td>24.86 ± 1.95</td>
<td>24.91 ± 1.81</td>
<td>23.99 ± 2.28</td>
<td>23.90 ± 2.71</td>
<td></td>
</tr>
<tr>
<td>Heart beat (Beats/ min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>121.6 ± 10.48</td>
<td>114.8 ± 5.20</td>
<td>122.4 ± 6.76</td>
<td>131.6 ± 6.58</td>
<td>122.4 ± 4.66</td>
<td>122.4 ± 6.88</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>131.2 ± 11.27</td>
<td>126.4 ± 7.86</td>
<td>128.8 ± 7.94</td>
<td>130.4 ± 3.25</td>
<td>125.0 ± 5.51</td>
<td>139.0 ± 10.75</td>
<td></td>
</tr>
<tr>
<td>Body temperature (°F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>101.76 ± 0.36</td>
<td>101.10 ± 0.18</td>
<td>101.44 ± 0.29</td>
<td>101.14 ± 0.16</td>
<td>101.40 ± 0.33</td>
<td>101.14 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>Treated</td>
<td>101.12 ± 0.45</td>
<td>101.5 ± 0.23</td>
<td>100.92 ± 0.20</td>
<td>101.06 ± 0.30</td>
<td>101.68 ± 0.23</td>
<td>101.63 ± 0.38</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1 shows the results of overall pain in dogs receiving placebo (Group I) or TCE (Group II). Dogs on placebo exhibited no significant change in pain level as compared to day 0 (P>0.05). Overall pain in dogs receiving TCE was significantly (P<0.05) reduced by day 90 (2.50 ± 0.50) as compared to day 0 (6.00 ± 0.35). The pain level was maximally reduced (1.13 ± 0.38) on day 150 (81.2%).

Figure 2 presents the pain level after limb manipulation in dogs receiving placebo or TCE. Dogs on placebo exhibited no significant change in pain at any time compared with day 0 (P>0.05). TCE-treated dogs showed significant reduction in pain upon limb manipulation by day 90 (1.10 ± 0.33) compared to day 0 (2.70 ± 0.2). The maximum pain reduction (0.5 ± 0.20) was observed on day 150 (81.5%).

Data in Figure 3 present pain after physical exertion in dogs receiving placebo or TCE for a period of 150 days. Dogs on placebo showed no significant reduction in pain at any time point compared to day 0. TCE-treated dogs exhibited significant reduction in pain on day 90 (1.20 ± 0.34) compared to day 0 (2.50 ± 0.19). Maximal pain reduction (0.38 ± 0.13) was noted on day 150 (84.2%).

Data of erythrocyte sedimentation rate (ESR) in dogs receiving placebo or TCE are shown in Table 2. No significant reduction in ESR was noted at any time point in dogs on placebo. Dogs receiving TCE showed a statistically significant reduction in ESR (P<0.05) from day 0.
showed significant (P<0.05) reduction in ESR on day 120 (0.63 ± 0.47) with a maximum reduction on day 150 (0.38 ± 0.38) compared to day 0 (2.40 ± 0.68), suggesting a marked reduction in inflammation.

Left stifle of a dog on placebo show exostosis involving the distal femur, proximal tibia, and patella (Figure 4). The radiographic changes noted are more severe in the radiograph taken on Day 150, which validates the normal progression of OA in the placebo group. Radiographically, the left stifle demonstrates how the body is attempting to stabilize an unstable joint by the process of bone formation. This is the normal disease progression of OA clinically as an animal attempts to make use of the joint.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control/Treated</th>
<th>Day 0</th>
<th>Day 30</th>
<th>Day 60</th>
<th>Day 90</th>
<th>Day 120</th>
<th>Day 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESR</td>
<td>Control</td>
<td>4.00 ± 2.01</td>
<td>3.80 ± 2.60</td>
<td>4.30 ± 2.43</td>
<td>4.30 ± 2.68</td>
<td>7.20 ± 5.70</td>
<td>5.20 ± 3.45</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>2.40 ± 0.68</td>
<td>2.00 ± 0.32</td>
<td>1.20 ± 0.37</td>
<td>1.30 ± 0.77</td>
<td>0.63 ± 0.47*</td>
<td>0.38 ± 0.38*</td>
</tr>
</tbody>
</table>

Table 2: Effects of placebo or *T. chebula* extract on erythrocyte sedimentation rate (ESR) in arthritic dogs. *Values significantly different from day 0 (P<0.05).

Radiographs obtained of the right humero-radial (elbow) joint from a dog receiving TCE showed a slowed progression of bone formation in a typical arthritic joint (Figure 5). The amount of exostosis involving the distal humerus, radius, and ulna is not what one would expect to observe in a 150 day interval. Minor radiographic sclerosis of the articular surfaces is observed. The comparison of the Day 1 versus Day 150 radiographs show some arthritic progression, but at a much slower pace than is typical in an OA joint.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control/Treated</th>
<th>Day 0</th>
<th>Day 30</th>
<th>Day 60</th>
<th>Day 90</th>
<th>Day 120</th>
<th>Day 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Bilirubin (mg/dl)</td>
<td>Control</td>
<td>0.22 ± 0.02</td>
<td>0.18 ± 0.05</td>
<td>0.16 ± 0.02</td>
<td>0.14 ± 0.02</td>
<td>0.18 ± 0.02</td>
<td>0.18 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>0.16 ± 0.02</td>
<td>0.20 ± 0.04</td>
<td>0.18 ± 0.04</td>
<td>0.26 ± 0.04</td>
<td>0.20 ± 0.00</td>
<td>0.20 ± 0.04</td>
</tr>
<tr>
<td>ALT(IU/L)</td>
<td>Control</td>
<td>84.20 ± 29.19</td>
<td>87.20 ± 33.38</td>
<td>88.60 ± 29.86</td>
<td>80.20 ± 23.81</td>
<td>71.60 ± 20.14</td>
<td>76.40 ± 26.12</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>59.20 ± 10.37</td>
<td>42.80 ± 8.89</td>
<td>50.00 ± 9.41</td>
<td>223.80 ± 173.90</td>
<td>45.25 ± 8.82</td>
<td>35.75 ± 6.02</td>
</tr>
<tr>
<td>AST(IU/L)</td>
<td>Control</td>
<td>27.80 ± 2.78</td>
<td>25.20 ± 2.48</td>
<td>22.00 ± 1.64</td>
<td>25.80 ± 1.88</td>
<td>31.00 ± 6.41</td>
<td>24.00 ± 2.85</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>26.40 ± 2.42</td>
<td>26.60 ± 1.03</td>
<td>28.40 ± 1.60</td>
<td>56.20 ± 31.28</td>
<td>23.25 ± 1.75</td>
<td>25.75 ± 2.39</td>
</tr>
<tr>
<td>BUN(mg/dl)</td>
<td>Control</td>
<td>18.80 ± 2.94</td>
<td>20.00 ± 3.15</td>
<td>17.60 ± 1.08</td>
<td>18.80 ± 1.88</td>
<td>17.00 ± 0.89</td>
<td>20.60 ± 2.27</td>
</tr>
</tbody>
</table>

Serum chemistry and CBC data of dogs treated with placebo or TCE are presented in Tables 3 and 4, respectively. Neither placebo nor TCE treated dogs showed a statistically significant difference from Day 0 for any serum chemistry or CBC parameters (P>0.5). One participant had consistently increased levels in RBC, HGB, and HCT. This was likely due to a difficult blood collection.
Table 3: Effects of placebo or *T. chebula* extract on serum chemistry parameters in arthritic dogs. No statistically significant difference from day 0 (P>0.05).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control/ Treated</th>
<th>Day 0</th>
<th>Day 30</th>
<th>Day 60</th>
<th>Day 90</th>
<th>Day 120</th>
<th>Day 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (106/µL)</td>
<td>Control</td>
<td>6.77 ± 0.32</td>
<td>7.03 ± 0.24</td>
<td>6.84 ± 0.16</td>
<td>6.78 ± 0.16</td>
<td>6.93 ± 0.28</td>
<td>6.75 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>8.19 ± 0.02</td>
<td>7.89 ± 0.41</td>
<td>7.96 ± 0.44</td>
<td>8.04 ± 0.30</td>
<td>8.37 ± 0.27</td>
<td>7.91 ± 0.19</td>
</tr>
<tr>
<td>WBC (103/µL)</td>
<td>Control</td>
<td>7.61 ± 0.80</td>
<td>8.11 ± 0.73</td>
<td>7.97 ± 0.84</td>
<td>8.47 ± 0.79</td>
<td>8.54 ± 0.78</td>
<td>9.37 ± 0.81</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>8.55 ± 1.29</td>
<td>8.77 ± 1.50</td>
<td>8.87 ± 1.21</td>
<td>9.03 ± 1.02</td>
<td>9.08 ± 0.76</td>
<td>9.68 ± 1.48</td>
</tr>
<tr>
<td>HGB(g/dL)</td>
<td>Control</td>
<td>16.74 ± 0.55</td>
<td>16.88 ± 0.74</td>
<td>16.50 ± 0.66</td>
<td>16.58 ± 0.74</td>
<td>16.78 ± 0.96</td>
<td>16.64 ± 0.60</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>19.04 ± 0.47</td>
<td>18.46 ± 0.88</td>
<td>16.50 ± 0.66</td>
<td>16.58 ± 0.74</td>
<td>16.78 ± 0.96</td>
<td>16.64 ± 0.60</td>
</tr>
<tr>
<td>HCT (%)</td>
<td>Control</td>
<td>52.26 ± 0.61</td>
<td>50.46 ± 1.67</td>
<td>18.78 ± 1.02</td>
<td>19.54 ± 0.77</td>
<td>19.75 ± 0.58</td>
<td>18.65 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>58.22 ± 2.49</td>
<td>54.30 ± 2.56</td>
<td>55.60 ± 2.74</td>
<td>54.74 ± 1.77</td>
<td>56.53 ± 1.94</td>
<td>54.73 ± 1.75</td>
</tr>
<tr>
<td>MCV (fL)</td>
<td>Control</td>
<td>74.14 ± 1.82</td>
<td>71.80 ± 1.46</td>
<td>71.94 ± 1.14</td>
<td>70.30 ± 1.13</td>
<td>72.86 ± 0.88</td>
<td>72.56 ± 1.77</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>71.08 ± 2.32</td>
<td>68.94 ± 0.89</td>
<td>69.52 ± 1.13</td>
<td>68.24 ± 1.48</td>
<td>67.55 ± 1.39</td>
<td>69.23 ± 1.76</td>
</tr>
<tr>
<td>MCH (pg)</td>
<td>Control</td>
<td>23.68 ± 0.42</td>
<td>23.94 ± 0.50</td>
<td>24.12 ± 0.59</td>
<td>24.40 ± 0.57</td>
<td>24.14 ± 0.52</td>
<td>24.62 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>23.26 ± 0.35</td>
<td>23.42 ± 0.32</td>
<td>23.60 ± 0.30</td>
<td>24.32 ± 0.62</td>
<td>23.65 ± 0.41</td>
<td>23.60 ± 0.40</td>
</tr>
<tr>
<td>MCHC (g/dL)</td>
<td>Control</td>
<td>32.02 ± 0.91</td>
<td>33.36 ± 0.49</td>
<td>33.50 ± 0.44</td>
<td>34.76 ± 0.67</td>
<td>33.10 ± 0.38</td>
<td>34.00 ± 0.96</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>32.82 ± 0.93</td>
<td>34.02 ± 0.07</td>
<td>33.98 ± 0.32</td>
<td>35.68 ± 0.50</td>
<td>34.98 ± 0.33</td>
<td>34.15 ± 0.63</td>
</tr>
</tbody>
</table>

Table 4: Effects of placebo or *T. chebula* extract on CBC parameters in arthritic dogs. No statistically significant difference from day 0 (P>0.05).

Discussion

The present investigation was carried out with a hypothesis that daily oral administration of *Terminalia chebula* extract (TCE, 1000 mg in two divided doses) in moderately OA dogs will ameliorate the signs of OA and TCE will be well tolerated. Some of the highlighted findings of the present investigation are mentioned here in brief. It was noteworthy from Figures 1-3 that TCE significantly (P<0.05) reduced OA associated pain (81-84%) in dogs, using different criteria (overall pain, pain upon limb manipulation, and pain after physical exertion). TCE-treated dogs had markedly reduced erythrocyte sedimentation rate (ESR), a biomarker of inflammation, suggesting a decline in inflammation (Table 2). Interestingly, timing of reduction in ESR/inflammation coincided with a decline in arthritic pain. The levels of arthritic pain and ESR remained the same or slightly elevated in dogs receiving placebo. Radiographic evidence suggested that dogs treated with TCE for 150 days exhibited a very slow pace of arthritic progression compared to those receiving placebo (Figures 4 and 6, respectively). Dogs receiving placebo or TCE did not experience any untoward effects, and no significant change occurred in serum markers or CBC during the period of this investigation, which suggested that TCE was well tolerated.

Dogs with OA may show clinical signs of limping, stiffness of joints, immobility, crepitus, periarticular swelling, and lameness. Pain associated with inflammation appears to be the most serious sign of OA [3,11-16,30]. As stated in the introduction, pathophysiology of OA is very complex due to involvement of multiple factors [18,20-26]. Among all these factors, oxidative stress (due to excess generation of free radicals) and inflammation are proven to be the major contributing factors in joint damage and pain [67-71].

TCE consists of many biologically active principles (chebulagic acid, chebulinic acid, chebulic acid, gallic acid, ellagic acid, tannic acid, corilagin, polyphenolic compounds, triterpenoids, and ascorbate). Chebulagic acid and chebulinic acid are the major constituents and their chemical structures are shown in Figure 6. In experimental and human studies, TCE and its components have been shown to exert antioxidant, anti-inflammatory and analgesic activities, thereby exerting anti-arthritic effects [72-82]. Das et al. [83] demonstrated that
gallic acid in TCE inhibited NF-κB activity, suggesting its potential for anti-inflammatory activity. In another study, Reddy et al. [84] have shown that chebulagic acid exerts anti-inflammatory and anti-proliferative actions by inhibiting activities of COX2 and 5-lipooxygenase (5-LOX), the key enzymes involved in inflammation. In a recent study, Martinez et al. (2015) reported that a C-phyocyanin-based nutraceutical may provide anti-inflammatory activity by inhibiting COX (preferentially COX-2) and LOX activities. Findings of these investigations corroborated with observations of the present study, supporting TCE-induced antioxidant, anti-inflammatory and anti-arthritic properties in OA dogs. It is highly probable that the observed anti-inflammatory effect was exerted by the active principles (chebulagic acid, gallic acid, polyphenols and other bio-active compounds) present in TCE.

Figure 6: Chemical structures of chebulagic acid and chebulinic acid.

Additional properties of TCE, such as nutritional, physiological [85], adaptogenic, immunomodulatory [86-88], and other pharmacological actions [66,78,79,83,89-93] might have played roles in the treatment of arthritic dogs. In our recent investigations, nutraceuticals such as purified Shilajit and Cremninex 3+, by having antioxidant and anti-inflammatory properties, also significantly ameliorated pain and other signs of OA in dogs [16,30].

In conclusion, significant reductions in pain and inflammation, and improvement in joint cartilage and daily activity in dogs treated with TCE might be due to the effects of several pharmacologically active compounds exerting multiple mechanisms, including anti-oxidant and free radical scavenging, anti-inflammatory, anti-proliferative, immunomodulatory, and cytoprotective activities. TCE has a great potential for treatment of OA and has been found to be safe for long-term use. Detailed mechanistic studies need to be explored, and long-term large scale clinical trials in OA prone species (canine, equine, and human) need to be pursued.

Acknowledgement

This investigation was supported in part by Natreon, Inc (New Brunswick, NJ, USA).

References

