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Introduction
Accurate estimation of reference evapotranspiration (ET0) has a 

vital importance for many studies such as hydrologic water balance, 
the design and management of irrigation system and water resources 
planning and management. The Penman-Monteith FAO 56 (PM FAO-
56) model is recommended as the sole method for calculation of ET0
and it has been reported to be able to provide consistent ET0 values 
in many regions and climates [1-2]. The main shortcoming of the PM 
FAO-56 method is, however, that it needs large number of climatic 
data and variables which are unavailable in many regions (especially in 
developing countries like Turkey). 

Recently, the multi-layer perceptron (MLP) neural networks 
successfully applied in ET0 estimation. Kumar et al. used MLP models 
for the estimation of evapotranspiration and they found that the MLP 
performed better than the PM FAO-56 method [3]. Trajkovic et al. 
applied radial basis function neural networks in ET0 estimation [4]. 
Kisi investigated the accuracy of the MLP with Levenberg-Marquardt 
training algorithm and reported that MLP can be successfully 
employed in modeling ET0 from available climate data. MLP models 
were compared with some empirical models and found to have better 
accuracy in estimating ET0 [5]. Gorka et al. Rahimikhoob investigated 
the use of MLP for estimating ET0 based on air temperature data 
under humid subtropical conditions and found that MLP performed 
better than the Hargreaves method [6]. Marti et al. estimated ET0 by 
MLP without local climatic data [7]. Marti et al. examined the 4-input 
MLP models for ET0 estimation through data set scanning procedures 
[8]. Several contributions on MLP modeling in ET0 estimation were 
reviewed by Kumar et al. [3]. Shrestha and Shukla used support vector 
machine for modeling of ET0 using hydro-climatic variables in a sub-
tropical environment [9]. Gocic et al. applied extreme learning machine for 
estimation of reference evapotranspiration and compared with empirical 
equations. It is evident from the literature; there is not any published work 
that compares the accuracy of, in modeling daily ET0 [10]. 

The aim of this study is to investigate the accuracy of six different 
MLP algorithms, Quasi-Newton, Conjugate Gradient, Levenberg-
Marquardt, One Step Secant, Resilient Backpropagation and Scaled 
Conjugate Gradient algorithms, in daily ET0 estimation.

Materials and Methods
Materials

Daily weather data from Antalya Station (latitude 36° 42' 
N, longitude 30° 44' E) operated by the Turkish Meteorological 
Organization (TMO) in Turkey were used in the study. The station 
is located in Mediterranean Region (Figure 1) of Turkey and 47 m 
below the sea level. It has a Mediterranean climate (dry summers 
and wet winters). The maximum temperatures are 24°C for winter 
and 40°C for summer.

The data sample is composed of 7743 daily (1973-2002) records of 
solar adiation (SR), air temperature (T), relative humidity (RH) and 
wind speed (U2). First 4645 data (60% of the whole data) were used 
to train the MLP models, second 1549 data (20% of the whole data) 
data were used for validation and the remaining 1549 data (20% of 
the whole data) were used for testing. Statistical parameters of the 
used weather data are reported in Table 1. In this table, the xmean, Sx, 
Csx, Cv, xmin, and xmax denote the mean, standard deviation, skewness, 
coefficient of deviation, minimum, and maximum, respectively. It 
is clear from the table that the relative humidity shows a skewed 
distribution. SR seems to be most effective parameter on ET0 according 
to the correlation analysis. Tmean and RH are the second and third most 
effective parameters on the ET0.

Multi-layer perceptron

Multi-layer perceptron is inspired from biological nervous system, 
though much of the biological detail is neglected. MLP networks are 
massively parallel systems composed of many processing elements. 
The MLP structure used in the present study is shown in Figure 2. 
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The network consists of layers of parallel processing elements, called 
neurons. Each layer in MLP is connected to the proceeding layer by 
interconnection weights. During the training/calibration process, 
randomly assigned initial weight values are progressively corrected. In 
this process, calculated outputs are compared with the known outputs 
and the errors are back propagated to determine the appropriate weight 
adjustments necessary to minimize the errors.

In the present study, six different training algorithms, Quasi-Newton 
(QN), Conjugate Gradient (CG), Levenberg-Marquardt (LM), One Step 
Secant (OSS), Resilient Back propagation (RB) and Scaled Conjugate 
Gradient (SCG), were used for adjusting the MLP networks. The detailed 
theoretical information about MLP can be found in Haykin [11].

Choosing optimal hidden nodes' number is a difficult task in 
developing MLP models. In this study, the MLP with one hidden layer 
was used and the optimal hidden nodes were determined by trial-
error method. The sigmoid and linear activation functions were used 
for the hidden and output nodes, respectively. Two different iteration 
numbers, 1000 and 5000 were used for the MLP training because the 
variation of error was too small after 5000 epochs. A MATLAB code 
including neural networks toolbox was used for the MLP simulations. 
Four weather parameters were used as inputs to the MLP models to 
estimate ET0. Root mean square errrors (RMSE), mean absolute error 
(MAE), Willmott index of agreement (d) and determination coefficient 
(R2) statistics were used for evaluation of the applied models. The 
RMSE, MAE and d can be defined as:

Figure 1: The location of Antalya Station.

Data 
set Unit Xmax Xmin Xmean Sx Cv Csx

Correlation with 
ET0

Tmean °C 37.5 1.7 18.5 7.1 0.38 0.17 0.57

SR Mj/m2/
day 33.4 0.15 17.2 7.5 0.43 -0.23 0.68

U2 m/s 98 14 63.7 16.8 0.26 -0.45 0.07

RH % 13 0 2.8 1.55 0.55 1.9 0.46

ET0 mm 15 0 4.08 2.39 0.59 0.7 1

Table 1: Basic statistics of the weather parameters for the Antalya Station.
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Figure 2: A MLP structure.



Citation: Kisi O, Demir V (2016) Evapotranspiration Estimation using Six Different Multi-layer Perceptron Algorithms. Irrigat Drainage Sys Eng 5: 164. 
doi:10.4172/2168-9768.1000164

Page 3 of 6

Volume 5 • Issue 2 • 1000164Irrigat Drainage Sys Eng
ISSN: 2168-9768 IDSE, an open access journal

Optimal hidden node number that gave the minimum RMSE errors 
in the validation period was selected for each MLP model. In Table 2, 
(4, 10, 1) indicates a MLP model comprising 4 input, 10 hidden and 1 
output nodes. The QN, CG, LM and RB algorithms has the same optimal 
hidden node numbers for the 1000 and 5000 epochs. The hidden node 
numbers of the OSS and SCG algorithms decrease by increasing epoch 
numbers. Actually, the runs of the LM, QN and CG algorithms were 
automatically stopped after 24, 830 and 354 epochs, respectively. It can 
be said that these epochs are enough for the training of QN, CG and 
LM algorithms because the error gradients are too small after these 
epochs. For this reason, the structure, training duration and accuracies 
of these three algorithms are same for the 1000 and 5000 epochs. It is 
clearly seen from Table 1 that the LM algorithm has the lowest RMSE 
and MAE and the highest R2 values than the other algorithms for both 
1000 and 5000 epochs. In the case of 1000 epochs, the accuracy ranks 
of the algorithms in training period are; LM, QN, SCG, CG, OSS and 
RB from the RMSE viewpoint. In the case of 5000 epochs, however, 
the ranks are; LM, QN, SCG, OSS, RB and CG. The algorithms are also 
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In which the N and ET show the number of data sets and reference 
evapotranspiration, respectively.

Application and results
Training, validation and test results of the MLP algorithms are 

given in Table 2. Training duration is also provided in this table for each 
algorithm. It should be noted that the properties of the computer used 
in the applications are Intel(R) Core(TM) i5-3230M CPU@2.60GHz. 

Phase Epochs Comparison criteria
Algorithm

MLR QN CG LM OSS RB SCG

Training

1000

RMSE(mm) - 0.076 0.265 0.073 0.31 0.461 0.18

MAE (mm) - 0.005 0.07 0.005 0.096 0.213 0.032

R2 - 0.998 0.987 0.999 0.982 0.962 0.994

Duration (sn) - 31.7 3.92 2 39.6 20.6 37.7

Structure - (4,10,1) (4,9,1) (4,5,1) (4,7,1) (4,7,1) (4,6,1)

5000

RMSE(mm) - 0.076 0.265 0.073 0.128 0.131 0.101

MAE (mm) - 0.005 0.07 0.005 0.093 0.017 0.01

R2 - 0.998 0.987 0.999 0.997 0.996 0.998

Duration (sn) - 31.3 3.91 1.97 200 102 179

Structure - (4,10,1) (4,9,1) (4,5,1) (4,4,1) (4,7,1) (4,4,1)

Validation

1000

RMSE(mm) - 0.077 0.281 0.071 0.273 0.512 0.18

MAE (mm) - 0.006 0.079 0.005 0.074 0.263 0.032

R2 - 0.999 0.986 0.999 0.987 0.955 0.994

5000

RMSE(mm) - 0.077 0.281 0.071 0.137 0.124 0.099

MAE (mm) - 0.006 0.079 0.005 0.018 0.015 0.009

R2 - 0.999 0.986 0.999 0.996 0.997 0.998

Test

1000

RMSE(mm) - 0.089 0.327 0.083 0.334 0.524 0.205

MAE (mm) - 0.007 0.107 0.006 0.112 0.274 0.042

R2 - 0.999 0.983 0.999 0.982 0.996 0.994

d 0.995 0.988 0.999 0.980 0.996 0.993

5000

RMSE(mm) - 0.089 0.327 0.083 0.147 0.161 0.125

MAE (mm) - 0.007 0.107 0.006 0.021 0.026 0.015

R2 - 0.999 0.983 0.999 0.996 0.995 0.997

d 0.996 0.990 0.999 0.999 0.997 0.995

MLR

RMSE(mm) 0.500 - - - - - -

MAE (mm) 0.250 - - - - -

R2 0.960 - - - - - -

d 0.983 - - - - - -

Table 2: Training, validation and test results of the MLP algorithms in estimating PM FAO-56 ET0.
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compared in Figures 3-4 with respect to RMSE accuracy and training 
duration. Training speed of each algorithm can be obviously seen from 
this figure. Comparison of training times of the algorithms indicates 
that the LM is faster than the other algorithms. The training duration 
ranks are; LM, CG, RB, QN, SCG and OSS.

From Table 2, it is clear that the LM algorithm performs better than 
the other algorithms in daily ET0 estimation in validation stage. There 
is a slight difference between the QN and LM algorithms. The accuracy 
ranks of the algorithms for the 1000 epochs are; LM, QN, SCG, OSS, 
CG and RB. In the case of 5000 epochs, the ranks are; LM, QN, SCG, 
RB, OSS and CG. The multiple linear regression (MLR) model results 
are also included in Table 2 for the test stage. It is obviously seen from 
the table that the LM algorithm has almost same accuracy with the QN 
and they perform better than the other four algorithms in test stage. In 
the case of 1000 epochs, the accuracy ranks of the algorithms in the test 
period are; LM, QN, SCG, CG, OSS and RB. In the case of 5000 epochs, 
however, the ranks are; LM, QN, SCG, OSS, RB and CG as found in the 
training period. All the algorithms are found to be better than the MLR 
in estimating daily ET0. 

The scatterplots of the ET0 estimates for the 1000 epochs are 
illustrated in Figure 5. It is clear from the fit line equations and R2 

values in the figure that all the algorithms gave better estimates than 
the MLR model. It is evident form the scatterplots that the slope of 
the LM algorithm (0.9962) is closer to the 1 than those of the other 
algorithms. The CG and OSS algorithms have much more scattered 
estimates than the QN, LM, RB and SCG. Figure 6 demonstrates the 
ET0 estimates of the six MLP algorithms for the 5000 epochs. Here 
also the estimates of the LM algorithm are closer to the corresponding 
FAO-56 ET0 values than the other five algorithms. The CG algorithm 
gave the worst estimates. 

Ladlani et al. modeled daily FAO 56 PM ET0 in the north of 
Algeria using two different ANN methods, radial basis neural networks 
(RBNN) and generalized regression neural networks (GRNN) [12]. 
Climatic data of daily mean relative humidity, sunshine duration, 
maximum, minimum and mean air temperature and wind speed were 
used as inputs to the applied models. The optimal RBNN and GRNN 
models provided the R2 of 0.934 and 0.945, respectively. Adamala et 
al. applied second order neural networks (SONN) and compared 
with MLP method in estimating daily FAO 56 PM ET0 in India [13]. 
They used inputs of daily climate data of minimum and maximum air 
temperatures, minimum and maximum relative humidity, wind speed 
and solar radiation in the models and they found that the best SONN 
and MLP models gave R2 of 0.998 and 0.995, respectively. Yassin et al. 
used MLP and gene expression programming (GEP) in estimating FAO 
56 PM ET0 in Saudi Arabia [14]. They used daily data of maximum, 
minimum and mean air temperatures, maximum, minimum and mean 
relative humidity, wind speed at a 2 m height and solar radiation as 
input s to the models [15-19]. They found R2 of 0.998 and 0.954 for the 
best MLP and GEP models in in estimating ET0. It is clear from Table 2 
that the MLP models (R2 values range 0.995-0.999) accurately estimate 
daily FAO 56 PM ET0 of Antalya station from the R2 viewpoint [20-24].

In overall, the LM and QN generally performed superior to the other 
algorithms in estimating daily FAO 56 PM ET0. Like QN method, the 
LM algorithm was designed to approach second order training speed 
[25-28]. They can converge much faster than first order algorithms such 
as CG, OSS, RB and SCG. However, the main disadvantage of these 
approaches is that they require large memory space for approximation 
when training has large-sized patterns. LM algorithm is viewed as a 
standout amongst the most efficient algorithms for training small and 
medium sized patterns [29-30]. 

Conclusion
This study investigated the accuracy and training speed of six 

different MLP algorithms, Quasi-Newton, Conjugate Gradient, 
Levenberg-Marquardt, One Step Secant, Resilient Backpropagation and 
Scaled Conjugate Gradient algorithms, in estimating daily reference 
evapotranspiration. The results of the MLP algorithms are compared 
with those of the multiple linear regression models with respect to root 
mean square error mean absolute error and determination coefficient. 
The LM was found to be faster and had a better accuracy than the other 
five training algorithms in estimating daily ET0. A slight difference 
exists between the QN and LM algorithms. The worst estimates were 
obtained from the CG algorithm. Comparison with multiple linear 
regression indicated that all the considered algorithms performed 
better than the MLR in estimating daily ET0.
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Figure 5: The FAO 56 PM ET0 and estimated values by different MLP algorithms for 1000 epochs and MLR in test period.
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Figure 6: The FAO 56 PM ET0 and estimated values by different MLP algorithms for 5000 epochs and MLR in test period.
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