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Introduction
Many compounds affecting the hemostatic system have been 

described from several sources such as fungus, bacteria, plants, 
animal venoms, and animal fluids and secretions, playing roles on 
biological processes, such as feeding, digestion, self-defense, and also 
in the internal physiological process of the organism [1]. Especially 
the animal venoms and secretions are rich and complex mixtures of 
biologically active proteins and peptides that exhibit several functions 
on the hemostatic system.

Exogenous factors affecting hemostasis, especially toxins 
from animal venoms, have largely been studied with a purpose to 
understanding the pathophysiology of envenoming in human accidents 
involving snakes, spiders, caterpillars, and wasps, for instance [2]. Many 
of these toxins are proteins, triggering pro or anticoagulant activities, 
and they have been characterized in respect to their biochemical 
and pharmacological properties. They can be involved in various 
effects observed in the poisoning, such as bleeding, hemorrhage and 
disseminated intravascular coagulation [3]. 

On the other hand, efforts have been applied on the research of 
these proteins for cataloging and classifying them according to sequence 
analysis, structure and activity [4-6]. In this regard, new molecules 
have been discovered, opening new perspectives for basic and applied 
researches. These molecules can point out novel mechanisms of action, 
undiscovered molecular interactions and new classes of enzymes and 
inhibitors. 

Exogenous hemostatic factors can also have a wide range of 
biotechnological and pharmacological applications [3]. Based on 
their specific activities, exogenous factors can be used as reagents in 
diagnostic kits to detect hemostatic disturbances and deficiencies of 
a clotting factor, or even be used as components for kits to monitor 
hemostatic parameters [7]. In addition, exogenous factors have been 
suggested as therapeutic agents for various disturbances that involve 
unbalanced hemostasis, such as thrombosis, arthrosclerosis, stroke, 
clotting factor deficiencies, cancer and bleeding reverser [8,9].

The sources of exogenous hemostatic factors

Important sources of exogenous hemostatic factors are animal 
venoms mainly from snakes, which involve specialized structures for 

venom production, storage and injection. Toxins present in these 
venoms intended to act on the hemostatic system of the prey. On the 
other hand, there are venom toxins that can be obtained from animal 
tissue extracts, such as the caterpillar bristles, because they do not 
have well specialized structures devoted to venom production and 
injection, which means they are disperse over the caterpillar’s body 
[10]. In general, the exogenous action on hemostasis of these toxins has 
a defense purpose, protecting the poisoning animal against predators.

In the Insecta class there are a few members reported that produce 
toxins with direct activities on coagulation and fibrinolysis. Moth 
caterpillars from the genus Lonomia can cause a severe hemorrhagic 
syndrome after skin contact with their bristles, and they can be found 
mainly in Brazil and Venezuela [2]. In the South and Southeast 
regions of Brazil, the species Lonomia obliqua has been associated with 
human envenomation accidents since the 1980s, and it is considered 
as a public health problem [11]. The mechanism by which Lonomia 
obliqua induces the hemorrhagic syndrome is through a consumptive 
coagulopathy due to procoagulant toxins contained in its venom [12]. 
Wasps’ venom has proteolytic enzymes that display anticoagulant 
function by hydrolyzing several clotting factors, such as FII, FVII, 
FVIII, FIX, FX and tissue factor (TF) [13].

White (2005) listed the snakes of medical importance that affect the 
hemostatic system. The venom of these reptiles can cause several types 
of coagulopathy including procoagulant and anticoagulant actions, 
fibrinogen clotting, fibrinolysis, platelet-activation, prothrombotic 
and hemorrhagic states [14]. A diversity of toxins from snake venoms 
has been described: hemorragins, clotting factor activators, clotting 
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fibrinolysis, platelet function and vascular integrity. Larréché et al. 
[29] classified them into four main groups: hemorrhagins; components 
affecting platelet function (which can also be referred as platelet 
activators/inhibitors); components affecting coagulation; and, 
components affecting fibrinolysis. 

In general, the exogenous factors can be considered as two separated 
groups: procoagulants and anticoagulants. The procoagulants can 
include platelet activators, clotting factor activators, and thrombin-like 
enzymes, whereas the anticoagulants can include platelet inhibitors, 
fibrin(ogen)olytics, plasminogen activators, and clotting factor 
inhibitors, since they are able to prevent blood clotting and maintain 
blood incoagulable. 

This paper is focused mainly on the exogenous procoagulant 
proteins from snakes and insects. The hemorrhage and components 
affecting platelet functions are out of the scope, but these groups of 
molecules were discussed by some authors [8]. For a review on the 
exogenous anticoagulants the reader is referred to Monteiro [30] and 
Kini [31,32]. 

Table 1 shows some proteins acting as procoagulants, which have 
been isolated from animal venoms or saliva of hematophagous animals 
and biochemically characterized

Exogenous procoagulant factors	

In general, the exogenous procoagulant proteins are 
metalloproteinases or serine proteinase that display activity on a specific 
factor of the coagulation cascade. These proteins usually hydrolyze the 
zymogenic form of a clotting factor converting it in the active form. 
Snake venoms are the richest sources of procoagulant toxins among the 
animal venoms [15], but these enzymes can also be found in arthropod 
venoms [4,33].   

Prothrombin activators: FXa is the physiological activator of 
prothrombin. The hydrolysis of prothrombin in thrombin by FXa is 
enhanced up to 300,000 times in the presence of phospholipids, FVa 
and calcium ions, which form with FXa, the prothrombinase complex 
[34]. Meizothrombin is formed as an intermediate product, by 
consecutive cleavages at Arg323-Ile324 and Arg274-Thr275. The intermediate 
products generated in the hydrolysis of prothrombin by FXa in absence 
of prothrombinase complex are Fragment 1.2 and Prethrombin 2 by 
cleavage at Arg274- Thr275 followed by cleavage at Arg323-Ile324 [35]. The 
exogenous prothrombin activators can differ in the specific cleavage 
site on prothrombin, the end products formed (meizothrombin or 
α-thrombin), the cofactor requirements (calcium ions, phospholipids 
and FVa) and the susceptibility to proteinase inhibitors. Based on these 
properties, the exogenous prothrombin activators, especially those 
from snake venoms, can be classify into four main groups [36]. Group 
A and B prothrombin activators are metalloproteinases that hydrolyze 
prothrombin into meizothrombin. Prothrombin activators from 
groups C and D are serine proteinase, which are able to generate active 
thrombin (α-thrombin) [28,36]. These toxins have a FX-like domain, 
and are found in Australian Elapid snake venoms. Also, they have been 
well distinguished by molecular phylogenetic analysis [37]. Group C 
prothrombin activators also show a FV-like domain and resemble the 
prothrombinase complex [38]. Both domains are highly conserved 
in the elapid family and present high similarity with mammalian 
FXa, e.g. Hopsarin D from Hoplocephalus stephensi, Trocarin D from 
Tropidechis carinatus [37] and FXa-FVa complex, e.g. Pseutarin C 
[39]. Kini [36] has reported examples and the biochemical properties 
of prothrombin activators from snake venoms belonging to the distinct 

factor inhibitors, proteins affecting platelets and fibrinolysis [15]. 
Disturbances in the hemostatic system are not the main effects found 
for fish and spider venoms, except for the genus Loxoceles [16]. 
Envenomation by Loxoceles spiders causes an increase in the activated 
partial thromboplastin time and depletion of the clotting factors 
VIII, IX, XI, and XII, by a procoagulant activity causing disseminated 
intravascular coagulation [16]. However, some effects on hemostasis 
have been described for fish and other spider venoms [17,18].

Apart from venoms, other animal fluids are the source of diverse 
proteins affecting hemostasis, such as hemolymph [19] and the 
bloodsucker’s saliva, which have actions over the coagulation system 
of another animal for feeding. In this case, exogenous factors act on 
the hemostasis of another animal to enhance the time of access to 
blood fluid through the wound made by specialized structures of the 
bloodsuckers [20]. Therefore, these animals have been an important 
source of new anticoagulants, among them, clotting inhibitors, 
fibrin(ogen)olytics, plasminogen activators and platelet inhibitors [21].

The targets on blood coagulation and fibrinolytic pathways

According to the target and the kind of activity, exogenous factors 
can have pro or anticoagulant effects. Their target may virtually be any 
factor on the coagulation or fibrinolytic system. The coagulation system 
functions by intrinsic pathways, with the actions of distinct factors in 
a descending cascade that results in the activation of prothrombin 
(FII) into thrombin (FIIa), which finally converts fibrinogen into fibrin 
clots. Activation of the coagulation cascade can start with tissue factor 
and phospholipids, which form an enzymatic active complex with 
FVIIa, or with the formation of an enzymatic complex consisting of 
FXIIa, prekallikrein and high molecular weight kininogen (HMWK), 
which had been previously distinguished as extrinsic and intrinsic 
pathways, respectively. Physiologically, there are intricate and complex 
interactions between each clotting factor, with regulation points 
through feedback mechanisms, endogenous inhibitors and cofactors 
[22]. Following the most recent concept, on a cell-based model, the 
pathways are not redundant, but operate in parallel [23]. 

The majority of clotting and fibrinolytic factors is synthesized and 
circulates in the blood in zymogen form. Exogenous factors can act 
through proteolytic activity by activating clotting factor zymogens (e.g. 
prothrombin activators, FX activators) or acting like a clotting factor 
(e.g. thrombin-like toxins), usually displaying procoagulant activity. 
Conversely, procoagulant proteins have been indicated as anticoagulant 
agents, because these enzymes can be administrated in therapeutic 
doses to deplete clotting factors, especially fibrinogen, without the 
bleeding risk commonly associated to therapeutic anticoagulants 
[24]. The thrombin-like enzymes have been highlighted as interesting 
therapeutic molecules for diseases associated to ischemic conditions, 
such as myocardial infarction and stroke, and in the prevention of 
thrombus formation and reduction of blood viscosity [25]. Exogenous 
inhibitors usually display anticoagulant activity by specifically 
inhibiting the activity of a clotting factor. Proteolytic enzymes that act 
on the fibrinolytic system have also been described, e.g. plasminogen 
activators, which have anticoagulant activity [26], and fibrinolytic 
enzymes, which are in general antithrombotic, because they can act on 
cross-linked fibrin [27,28].

The distinct groups of exogenous hemostatic factors

Exogenous hemostatic factors identified in animal venoms or in 
the saliva of hematophagous animals can exert their effects on the 
hemostatic system by several mechanisms affecting coagulation, 
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classes. However, there are prothrombin activators that present 
particular properties and do not fit properly into any of the four classes, 
e.g. the Lonomia obliqua prothrombin activator protease (Lopap) [4].

Insularinase A is a single-chain 23 kDa proteinase purified from 
Bothrops insularis venom. Insularinase A converts prothrombin into 
meizothrombin independent of the prothrombinase complex, and can 
also activate FX and hydrolyze fibrinogen and fibrin. cDNA sequence 
analysis revealed that the disintegrin domain of the precursor protein is 
post-translationally processed, producing mature Insularinase A [40].

Berythractivase is a non-hemorrhagic prothrombin activator 
from Bothrops erythromelas snake venom, belonging to group A. It 
is a single-chain metalloproteinase of 78 kDa, which is also capable 
of hydrolyzing fibrinogen Aα-chain and triggering endothelial 
proinflammatory and procoagulant cell responses. This toxin also 
induces the release of von Willebrand factor (vWF) and expression of 
cell adhesion molecules in endothelial cells. Its complete sequence has 
been reported and cDNA cloned from B. erythromelas venom-gland. 

Berythractivase contains three distinct domains: metalloproteinase, 
desintegrin-like and cysteine-rich domains, and it is similar to other 
snake venom metalloproteinases [41].

Trocarin D is a highly expressed toxin in the venom of the snake 
Tropidechis carinatus [42]. This protein belongs to the group D 
prothrombin activator, structurally similar to mammalian FX, and 
the structure was characterized from its gene by Reza [43]. It is a 
47-kDa glycoprotein that has a light chain with N-terminal gamma-
carboxyglutamic (Gla) domain, two EGF-like domains; and a heavy 
chain that consists of a serine proteinase domain. Its complete amino 
acid sequence has been previously reported [42].

Lopap is a prothrombin activator from the venom of Lonomia 
obliqua moth caterpillar with serine proteinase-like activity [44], 
which does not fit in the current classification of snake venom 
prothrombin activators [36]. It is able to activate prothrombin in the 
absence of the prothrombinase complex. It has its activity enhanced 
by calcium ions and generates α-thrombin without the intermediate 
meizothrombin [45]. Lopap monomer has a molecular mass of 20 kDa 

Molecule functiona Molecule name Animal source (sp) Molecular 
mass (Da) Additional targets Functional characteristic Referenceb

Factor X activators

RVV-X Vipera russelli 
(Daboia russelli) 92,880 FIX metalloproteinase, Ca2+ dependent Kisiel et al. [52]; 

Takeya et al. [50]
VLFXA Vipera lebetina 89,400 FIX metalloproteinase, Ca2+ dependent Siigur et al. [51,54] 

- Bungarus faciatus 70,000 S-2266 and S-2302
(kallikrein substrates) serino proteinase, Ca2+ dependent Zhang et al. [49]

Losac Lonomia obliqua 45,000 - serino proteinase, Ca2+ independent Alvarez Flores et 
al. [33]

Prothrombin (FII) 
activators

Ecarin Echis carinatus 56,000 or 
72,000 - metalloproteinase, Ca2+ independent group Ac  Yamada et al. [71]; 

Moore [72]
Insularinase A Bothrops insularis 22,639 FX, fibrinogen, fibrin metalloproteinase, group A Modesto et al. [40]

Berythractivase Bothrops erythromelas 78,000 - metalloproteinase, group A Silva et al. [41]
Carinactivase-1 Echis carinatus 87,000 - metalloproteinase Ca2+ dependent, group B Yamada et al. [71]

Pseutarin C Pseudonaja textilis ∼250,000 -
serino proteinase, dependent on Ca2+ and phos-
pholipids, group C, structurally and functionally 
similar to the mammalian FXa-FVa complex 

Rao and Kini [39]

Trocarin D Tropidechis carinatus 46,515 -
serino proteinase, dependent on Ca2+, phos-
pholipids and FVa group D, structurally similar 
to the mammalian FXa

Joseph et al. [42]

Textarin Pseudonaja textilis 53,000 - serino proteinase, dependent on Ca2+, phos-
pholipids and FVa, group D Stocker et al. [73]

Lopap Lonomia obliqua 69,000 or 
20,800 -

serino proteinase, its activity is enhanced by 
Ca2+ ions, structurally similar to lipocalin family 
members 

Reis et al. [4,44,45]

Factor V activators

RVV-V
Vipera russelli

(Dabioa russeli) 29,000 - serino proteinase Kisiel [1]

LVV-V (VLFVA)
Vipera lebetina

(Daboia lebetina) 28,400 - serino proteinase Siigur et al. [54]

Lonomin VI: a Lonomia achelous - - metalloproteinase López et al. [59]

Thrombin-like

Ancrod (Arvin)
Calloselasma rhodos-

toma (Agkistrodon 
rhodostoma)

48,000
(29,000d) - serine protease Burkhart et al. [94]; 

Yu et al. [93]

Batroxobin 
(Reptilase or 
Defibrase)

Bothrops atrox 
(Bothrops moojeni)

29,100
(25,503d) - serine protease Marsh [78]; Vu et 

al. [86]

Thrombocytin Bothrops atrox 36,000 prothrombin, FXIII, 
FVIII and platelets serine protease Niewiarowski et al. 

[61]; Glusa et al [62]
aSome molecules can display more than one function.  
bThe given references may not be of the first author to describe the respective molecules.
cAccording to the classification of Kini (2005)
dBased on amino acid composition without carbohydrate content

Table 1: Biochemical properties of procoagulant proteins from snake and arthropod venoms.
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and its sequence is not similar to other known sserine proteinase or 
prothrombin activators, but it is structurally similar to members of the 
lipocalin family. It is the first lipocalin presenting proteolytic activity 
[4]. This protein has been characterized in vitro and in vivo, and 
plays an important function in the consumptive coagulopathy caused 
by L. obliqua envenomation [44,45]. This toxin also triggers various 
responses in endothelial cells and displays antiapoptotic activity. 
Recently our research group have shown that rLopap is able to reverse 
the bleeding induced by LMWH in vivo [9,46,47]. 

Factor X activators: The physiological activators of FX are FIXa, in 
the intrinsic pathway, and FVIIa-TF, in the extrinsic pathway. FIXa can 
form a catalytic complex, called factor X-activating complex or tenase 
complex, in the presence of calcium ions, FVIIIa and phospholipids. 
FX activation by FIXa in this complex is accelerated 24 million-
fold [34]. Despite the fact that many FX activator enzymes have 
been reported in the venom of various snake species, only a limited 
number has been isolated and characterized, and most of them as 
being metalloproteinases from snakes of the Viperidae and Crotalidae 
families [48]. A few serine proteinase FX activators were described in 
Elapidae venom [49], and only one was reported from a lepidopter [33].

The complete amino acid sequence analysis was reported for 
two metalloproteinases, RVV-X (Russell’s viper venom factor X 
activator) [50] and VLFXA (Vipera lebetina factor X activator) [51]. 
Both proteins are glycosilated and show disintegrin-like, cystein-rich 
and metalloproteinase domain in the heavy chain. Also, they have 
C-type lectin domains in two light chains. The heavy and light chains 
are linked by disulfide bonds [50]. According to Tans and Rosing 
[48], the exogenous FX activators from snake venom can be classified 
according to the molecular mass, the number of subunits (polypeptide 
chains), and the susceptibility to proteinase inhibitors. Generally, there 
are two distinguished groups of FX activators, metalloproteinase and 
serine proteinase activators. The activators of the metalloproteinase 
are structurally and functionally similar to RVV-X. These RVVX-like 
enzymes have three subunits held together by disulfide bonds and 
require calcium ions for their activity. On the other hand, the activators 
of the serine proteinase correspond to single-chain proteins, strongly 
dependent on calcium as the RVVX-like activators. 

RVV-X was the first identified FX activator, which was purified 
from the venom of Vipera russelli (Daboia russelli) [52]. RVV-X is also 
capable to activate FIX. In 1997, the crystal structure of RVV-X was 
determined [53]. 

The VLFXA was purified from Vipera lebetina venom [54] and its 
amino acid sequence was deduced from the nucleotide sequences of 
cDNAs encoding the light and heavy chains, which are synthesized 
from different genes. VLFXA was the first FX activator who’s heavy 
and light chains were cloned [51]. Besides cleaving the Arg52-Ile53 bond 
in the heavy chain of FX, VLFXA is able to cleave the Arg226-Val227 bond 
in human FIX precursor. VLFXA could not activate prothrombin, 
and did not have any effect on fibrinogen. It had no arginine esterase 
activity toward benzoylarginine ethyl ester [54]. 

From lepidopters, the first identified FX activator was named Losac 
(Lonomia obliqua Stuart-factor activator). It consists of a 45-kDa serine 
proteinase purified from the bristles of the Lonomia obliqua moth 
caterpillar, which is able to activate FX in absence of calcium [33], 
unlike the other snake venom FX activators, which request calcium 
ions for their activity [48]. Besides its procoagulant activity, this 
protein also functions as a growth stimulator of endothelial cells and 
is an inhibitor of apoptosis by inducing the liberation of nitric oxide 

and tPA [33,55,56]. 

Factor V activators: Thrombin is the physiological activator 
of FV, as well as FXa [57]. Exogenous FV activators can be found in 
the venoms of snakes from the families Crotalidae (Bothrops atrox), 
Elapidae (Naja naja oxiana) and Viperidae (Vipera russelli, Vipera 
lebetina, Vipera ursini), and in the hemolymph of Lonomia achelous 
caterpillar. All of them have serine proteinase-like activity [58], except 
for the activator from caterpillar, which is a metalloproteinase [59]. 
The FV activators from the venoms of Vipera russelli (RVV-V) and 
Vipera lebetina (LVV-V) are single-chain proteinase of 26 and 28 
kDa, respectively. These toxins had their three-dimensional structure 
models predicted and their mechanism of activation of FV compared 
to human α-thrombin [60]. RVV-V and LVV-V activate FV by 
cleavage in a single peptide bond, in contrast to endogenous activation 
by thrombin, which cleavages three peptide bonds [58,60].

Thrombin-like enzymes: Thrombin is a multifunctional enzyme, 
which plays a key role in the coagulation system, because it directly 
converts circulating fibrinogen to an insoluble fibrin clot. Thrombin-
like enzymes are a group of toxins with serine proteinase-like activity 
able to clot fibrinogen. They are functionally and structurally related to 
thrombin, and are present in the venoms of several species of snakes 
from the families Viperidae and Colubridae [25]. Like thrombin, 
thrombin-like toxins can be multifunctional enzymes. There are 
thrombin-like enzymes reported to have FV activator activity [58], such 
as Thrombocytin from Bothrops atrox venom, which can also hydrolyze 
prothrombin, activate FXIII, FVIII and platelets [61], and cause an 
endothelium-dependent relaxation on arteries [62]. Despite most 
snake venom thrombin-like enzymes that only hydrolyze fibrinogen 
and have no effect on the other clotting factors, some thrombin-like 
toxins have shown activity in nervous and complement systems [25]. 
Castro et al. [25] have reviewed the structural and functional features 
of thrombin-like enzymes. In addition, some reports have shown the 
molecular cloning, phylogeny, as well as structural, biochemical and 
biological characterization of thrombin-like toxins [63].

As previously discussed, thrombin-like enzymes display 
procoagulant activity by converting fibrinogen to fibrin, but in vivo 
they can induce an anticoagulant effect by causing fibrinogen depletion 
[64,65]. In contrast to fibrin(ogen)olytics enzymes that usually cleave 
fibrinogen on the C-terminal portion hindering clot formation, 
thrombin-like enzymes hydrolyze fibrinogen at the N-terminal end 
of the Aα and/or Bβ chain, releasing relatively small portions of the 
fibrinogen molecule, called fibrinopeptides A and B, respectively [25]. 
These cleavages in the fibrinogen molecule allow its polymerization, 
with the formation of the fibrin clot [66]. However, in contrast to 
thrombin, the majority of the thrombin-like enzymes from snake 
venoms preferentially releases only fibrinopeptide A or B, resulting in 
the formation of abnormal fibrin clots, and some of them are not able 
to activate FXIII [67], necessary to form insoluble and cross-linked 
fibrin clots. Consequently, these enzymes form an instable fibrin clot, 
which is easily removed by the fibrinolytic system [68]. Two well-
characterized thrombin-like enzymes, Ancrod and Batroxobin, are 
currently used therapeutically as defibrinogenating agents [64].  

Thrombin-like enzymes are present on snake venoms; in contrast, 
at the moment it was not yet described thrombin-like enzymes from 
Lonomia venoms.

Exogenous Procoagulant Factors as Reagents for 
Diagnostic Tests 
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To date, the most important application for procoagulant toxins 
is in the area of diagnosis. Several toxins have been proved to be 
useful as reagents in laboratory tests for diagnosis, for example, to 
detect clotting factor deficiencies and to monitor patients undergoing 
anticoagulant therapy [7]. The diagnostic uses of snake venom toxins 
have been reviewed by different authors [7,69,70]. Prothrombin 
activators have a wide range of applications; they have been used for 
prothrombin assays, to detect dysprothrombinemias, disseminated 
intravascular coagulation and to assay PIVKA-II (protein induced 
by vitamin K absence or antagonist-II). PIVKA-II or des-gamma 
carboxyprothrombin is a non-functional prothrombin precursor, 
which accumulates during therapy with vitamin K antagonists, and is 
also a biomarker of hepatocellular carcinoma. Group A prothrombin 
activators, such as Ecarin, can cleave the descarboxy variety of 
prothrombin, because these enzymes act independently of calcium ions 
[71]. Therefore, these enzymes are not indicated to monitor patients’ 
anticoagulated with vitamin K antagonists. 

The procoagulant activity in plasma exerted by prothrombin 
activators can be affected by Hirudin, a thrombin inhibitor from leech 
saliva that is used as anticoagulant medication. In contrast, heparin 
and lupus anticoagulant cannot affect the procoagulant activity of these 
enzymes. Thus, prothrombin activators such as Ecarin are commonly 
used in laboratory tests (e.g. Ecarin clotting time) to monitor patients 
under treatment with Hirudin. In addition, Ecarin time has been 
proposed to be used in association with Taipan snake venom time 
to detect lupus anticoagulant in patients receiving oral anticoagulant 
therapy [72]. 

Textarin, a group D prothrombin activator has been also suggested 
as a reagent for the detection of lupus anticoagulant [73]. This enzyme 
is used in a test denominated Textarin time assay, to detect resistance 
to activated protein C (APC-resistance), which is frequently associated 
with a single point mutation in the FV gene, known as Factor V Leiden 
[74]. In this coagulation disorder, FVa is resistant to inactivation by 
APC, implicating in a thrombotic risk for the patient (thrombophilia) 
[75]. Therefore, the ratio of prolongation of clotting time in the 
presence of APC is less pronounced in the plasma from APC resistant 
patients [74]. There are a variety of prothrombin activators from the 
venoms of the Australian brown snake Pseudonaja textilis (Textarin), 
the saw-scaled viper Echis carinatus (Ecarin), the mainland Australian 
tiger snake Notechis scutatus scutatus (Noscarin), and the Taipan snake 
Oxyuranus scutellatus that are commercially available [68].

Among the snake venom FV activators commercially available, the 
RVV-V, a toxin from Russell’s viper venom is one of the most used. 
RVV-V is the key reagent of different diagnostic kits.  One of them is 
a clotting test based on the prothrombinase complex, and is used to 
monitor patients undergoing anticoagulant therapy, except for vitamin 
K antagonists. In presence of RVV-V the prothrombinase complex is 
formed very quickly, generating active thrombin that cleaves fibrinogen 
to fibrin.  Another kit using RVV-V is applied to detect Factor V Leiden 
mutation genotype. This test consists of two steps, one involving 
the activation of FV by RVV-V followed by inactivation of FVa by 
the addition of APC. In the second step, the group D prothrombin 
activator Noscarin is added to generate active thrombin and finally the 
fibrin clot. Since Noscarin activity is dependent of FVa as a cofactor, 
patients with Factor V Leiden mutation have short clotting times in 
comparison with normal individuals [7].  Another toxin from Russell’s 
viper venom, RVV-X is a FX activator also used for diagnostic tests, 
for detection of factor X deficiency [76] and lupus anticoagulant [77], 
which is another important risk factor for thrombophilia. A commonly 

used assay to detect lupus anticoagulant is the dilute Russell’s viper 
venom time dRVVT, which is based on the activity of RVV-X [70,77]. 
There are various kits commercially available to assay dRVVT, which 
contain purified RVV-X or the whole venom from Russell’s viper 
[70,77]. 

Thrombin-like enzymes from snake venoms are not inhibited by 
heparin, but they are used for detecting dysfibrinogenemias and to 
remove fibrinogen for different assays [78].  Batroxobin, a thrombin-
like enzyme from Bothrops moojeni or Bothrops atrox, is used in the 
diagnostic procedures and test kits, such as the Reptilase time [7]. 

Exogenous procoagulant factors as therapeutic agents
Unlike thrombin, which cleaves both fibrinopeptide A (FPA) and 

fibrinopeptide B (FPB) from fibrinogen, many thrombin-like enzymes 
usually only cleave FPA and do not activate FXIII. This aspect makes 
the thrombin-like enzymes interesting tools to remove fibrinogen from 
plasma (defibrinogenation) without the risk of thrombosis, because 
the fibrin clot formed is very unstable in contrast to cross-linked 
fibrin [68]. Therefore, the fibrin is rapidly removed by the fibrinolytic 
system. Otherwise, administration of a thrombin-like enzyme as a 
defibrinogenating agent has a low bleeding risk in comparison to other 
anticoagulants that have been used [24]. Among the procoagulant 
proteins from animal venoms currently in use as therapeutic tools, 
the most relevant are the thrombin-like enzymes. Ancrod is a 
serine proteinase toxin from a Malayan pit viper snake Agkistrodon 
rhodostoma (Calloselasma rhodostoma) [79] that cause reduction 
in plasma fibrinogen concentration in vivo by formation of soluble 
fibrin complexes, which are degraded by plasmin. Also, it induces 
plasminogen activation and leads to a fibrinolytic response [80]. 

Ancrod and Batroxobin, which are also commercially named 
Arvin and Defibrase, respectively, are indicated as defibrinogenating 
drugs to patients with stroke, deep vein thrombosis, myocardial 
infarction, peripheral arterial thrombosis, priapism, and sickle-cell 
crisis [64,81,82]. 

In a large-scale trial utilizing Ancrod (Arvin), for example, a higher 
proportion of patients achieved good functional outcomes when 
the drug was given within 3 h of stroke onset and continued for five 
days compared to placebo [83]. However, the phase III trials were 
terminated because they showed that giving the drug to patients within 
6 h of stroke onset was ineffective [84]. Therefore, the dosing regimen 
appears to be an important criterion for successful outcomes in the use 
of these defibrinogenating agents. 

The thrombin-like enzymes can be used as procoagulants for 
hemorrhage management. A mixture of two enzymes from the 
venom of B. atrox, a thrombin-like enzyme and a thromboplastin-like 
enzyme, form a clot-promoting product called Haemocoagulase. 
These enzymes cooperate, targeting different points at the coagulation 
cascade to form blood clots. The thrombin-like enzyme directly cleaves 
fibrinogen into fibrin monomers, and the thromboplastin-like enzyme 
activates FX, which in turn converts prothrombin into thrombin [69]. 
Batroxobin is a component present on venom from B. atrox moojeni 
that acts as thrombin-like enzyme [81,82,85]. This serine proteinase 
only releases fibrinopeptide A by specific cleavage of Arg16-Gly17 bond 
in the Aα-chain of fibrinogen, and it is not inhibited by antithrombin 
or heparin cofactor II [82,86]. 

In another therapeutic field, defibrinogenting agents may be used 
as a hemostatic agent to arrest bleeding, for example, during surgical 
procedures. The hemostatic reagents, which have been available for 
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over the last fifty years and are still currently used for these purposes, 
include absorbable gelatin sponge, oxidized cellulose, microfibrillar 
collagen and thrombin, which act by forming an artificial clot or by 
producing a mechanical matrix that facilitate clotting when applied 
directly to denuded or bleeding surfaces [87]. A fibrinogen-thrombin-
collagen-based material has been demonstrated to be advantageous 
because it is quickly available and easily applicable, but there are 
disadvantages inherent to exogenous fibrinogen and thrombin sources, 
which might be potentially infectious, and a rigorous control of several 
types of contamination would become necessary [88]. Therefore, 
development of hemostatic agents based on exogenous procoagulant 
factors would be an interesting approach. In addition, research on 
possible antidotes for the currently available anticoagulants should 
also be an interesting issue, especially in the cases of bleeding risk and 
surgical procedures. Recent studies have showed the recombinant form 
of the prothrombin activator isolated from Lonomia obliqua (rLopap), 
[4] as a first exogenous prothrombin activator capable of reversing 
bleeding induced by LMWH [9]. 

Table 2 shows some exogenous procoagulant factors as diagnostic 
test reagents and therapeutic drugs. 

The non-hemostatic effects of exogenous hemostatic

factors
 Endogenous coagulation and fibrinolytic factors can trigger effects 

not directly related to blood coagulation and fibrinolysis, such as effects 
related to inflammation, homeostasis and cell responses. Accordingly, 
an increasing number of studies have demonstrated non-hemostatic 
actions displayed by molecules characterized as exogenous hemostatic 
factors. 

The involvement of endogenous hemostatic factors was 
demonstrated in the cell regulation, cancer, angiogenesis, nervous 
system [89]. They can display various biological activities, hemostatic 
and non-hemostatic [32]. Exogenous hemostatic factors can modulate 
the endothelial cell responses, the release and synthesis of bioactive 
substances, the gene expression, the cell signaling, the cell adhesion, 
apoptosis, the proliferation and inflammatory reactions [90-92]. Two 
procoagulant proteins, Insularinase A and Lopap, have increased 
the levels of nitric oxide and prostacyclin released by endothelial 
cells, for instance [40,47]. In addition, Losac and Lopap have shown 
antiapoptotic activities [33,47]. Trocarin D, a well-characterized 

prothrombin activator from snake venom, can also trigger non-
hemostatic roles [90]. Besides its procoagulant action, Losac stimulated 
in endothelial cells the release of tissue plasminogen activator (t-PA), 
and nitric oxide (NO), a potent vasodilator [33]. NO may also inhibit 
apoptosis in endothelial cells [93] and t-PA has also the ability to 
promote cell proliferation independent of plasmin generation [94]. 
Thus, it is possible that t-PA and NO may be indirectly involved in 
Losac-induced cell proliferation and viability. On the other hand, 
the role of Losac-induced t-PA release in the hyperfibrinolytic state 
observed in patients was not yet fully explored. 

Analysis of gene expression in fibroblasts has shown that L. obliqua 
venom up-regulated the expression of genes involved in hemostasis, 
including tissue factor, a component of the tenase complex whose final 
product is thrombin, and the urokinase plasminogen activator (u-PA) 
receptor [95]. On the other hand, Losac induced in endothelial cells 
the up-regulation of transcription factors involved in cell proliferation 
and inhibition of apoptosis (unpublished data). Thus, there are a 
relationship between up-regulation of hemostasis by L. obliqua venom 
and modulation of cell proliferation and cell survival.

In the last years, biochemical and molecular methods have provided 
new insights about the interaction of blood coagulation with other 
processes, such as cell proliferation, tissue repair and angiogenesis [96]. 
It is well known that the activation of blood coagulation in response to 
tissue injury leads to thrombin formation which in turn induces the 
conversion of pro-hepatocyte growth factor (HGF) into active HGF for 
subsequent repair of damaged blood vessels [97]. Structurally, HGF is 
homologous to plasminogen and may be activated by the factor XIIa 
and by the plasminogen activators u-PA and t-PA [98]. It is noteworthy 
to mention that HGF was also associated with hypercoagulable 
conditions, such as disseminated intravascular coagulation (DIC) 
by multiples mechanisms [99]. Factor Xa and pro-inflammatory 
cytokines were reported to release soluble HGF from stromal cells and 
granulocytes [100]. HGF binds to its receptor in endothelial cells and 
activates cell signals leading to endothelial cell growth/migration and 
inhibition of apoptosis [101]. Moreover, HGF induces the expression of 
tissue factor and regulates gene transcription of plasminogen activator 
inhibitor 1 (PAI-1) and cyclooxygenase 2 (COX-2) [99, 102]. COX-2 
expressed by HGF inhibits anoikis, the apoptotic process induced by 
loss of matrix attachment [103]. 

Thus, the ability of L. obliqua venom to activate blood coagulation 

Procoagulant factor Main target Application Commercial names Characteristic Referencea

Diagnostic 
tests

Ecarin prothrombin Clotting time assay Tirofiban Prothrombin activator Moore [72]

Textarin prothrombin Lupus anticoagulant
Factor V Leiden Disease Prothrombin activator Stocker [73]

Noscarin prothrombin Factor V Leiden Disease Prothrombin activator Marsh and Williams [68]

RVV-X FX Factor X deficiency
Lupus anticoagulant RVV-X Factor X activator Bezeaud et al. [76];

Triplett [77]

RVV-V FV Clotting time assay
Factor V Leiden Disease RVV-V Factor V activator Schöni [7]

Clinical
therapy

Ancrod Fibrinogen Defibrinogenating agents Viprinex Thrombin-like Bell [64]

Batroxobin Fibrinogen Defibrinogenating agents Reptilase; Defibrase Thrombin-like Bell [64]; Qin et al. [81]; 
Serrano [82]

rLopap Prothrombin Bleeding reversor Prothrombin activator Andrade et al. [9]
Fibrinogen and 

Factor X Procoagulant for hemorrhage Haemocoagulase Mixture: Thrombin-like and 
thromboplastin like enzyme McCleary and Kini [69]

aThe given references may not be of the first author to describe the respective molecules
Table 2: Exogenous procoagulant factors as diagnostic test reagents and therapeutic drugs. 
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raises the possibility that mediators such as HGF, t-PA, NO and COX-
2 may also regulate the processes that involve cell proliferation, cell 
survival and tissue repair. On the other hand, other studies will be 
carried out aiming to shed light on the pathophysiological mechanism 
of the envenoming by L. obliqua allowing the identification of 
mediators, such as HGF, and its involvement in the hyperfibrinolytic 
state, a disturbance observed in patients and that remain, however, 
non-elucidated. 

Thus, the comprehension of the multi-faced physiological roles 
of exogenous factors can be helpful to better understand and treat 
the envenoming and bring new perspectives for therapeutic and 
biotechnological approaches.

Limitations of Exogenous Procoagulant Factors in 
Diagnostic and Therapeutic

The development of hemostatic agents based on exogenous 
procoagulant factors became an interesting approach for applications 
in health and biotechnology, but a number of limitations deserve 
mention. The complexity of some molecules makes still difficult the 
purification and recovery of these toxins from the venom maintaining 
the same biological activities, especially enzymatic. Contaminations 
with other venom factors could result in toxic effects. It has to be 
taken into consideration the use of recombinant toxins as tools for 
health care and biotechnology. There are publications describing the 
production of recombinant Batroxobin [104] and Ancrod [105] in 
Pichia pastoris, an organism which is currently being elected for the 
expression of recombinant proteins with therapeutic purposes, due 
to various advantages, such as cost-effectivity and easy up scaling, 
in comparison to prokaryotic systems and Saccharomyces [106]. 
However, biochemical, biophysical and pharmacological properties of 
a recombinant protein may not completely be the same as their native 
form, which means that it may not have the same rate of activity. 

Some proteins, such as Ancrod [105], have been clinically used in 
its native form, but the majority of procoagulant snake venom toxins 
have been used as reagents in laboratory tests and diagnostic kits 
[107]. The use of exogenous factors as therapeutic products need the 
approvals of several regulatory procedures that delay the time between 
research, development and production; not to mention the costs and 
efforts involving intellectual property. 

The research and development involving the use of procoagulant 
proteins are incipient in comparison to the current status of the use 
of exogenous inhibitors in the therapeutic field. One of the reasons 
is the management and unpredictable effects of its enzymatic activity 
in the organism, in addition to the immunogenic potential.  Ancrod 
treatment effectively reduce blood viscosity by inducing defibrination, 
but repeated intravenous or subcutaneous administration of Ancrod 
caused biological resistance in mammal, specially humans, due its 
antigenic nature [108]. Some approach were used to minimize the 
antigenic effects such as, oral administration of Ancrod delivered 
into a hydrogel capsule based on polyethylene glycol (PEG) [109]. 
Subsequently, Ancrod failed in several clinical trials for acute ischemic 
stroke [110-111], probably due to Ancrod-induced fibrin and reduced 
levels of t-PA in microvascular endothelium that could result in 
cerebral microvascular occlusion [112]. Unlike Ancrod, Bathroxobin 
was well successful for deep vein thrombosis [113].

Identification of new targets and new effects for the exogenous 
factors already described can open new perspectives, or the modification 
of the molecule based on functional and structural regions, for example 
the removal of the enzymatic activity when undesired to avoid a specific 
effect or the design and synthesis of short peptides to minimize toxic 
and side effects, all these are interesting task. 

Concluding Remarks and New Perspectives
To date, the largest applications of procoagulant snake venom 

toxins have been their used as reagents in laboratory tests and diagnostic 
kits [7]. Probably, this is due to potential risks associated to toxicity 
and immunogenicity of the clinical use of these proteins as therapeutic 
agents. In addition, the need for several regulatory procedures and 
approvals for the development of therapeutic drugs, and the high costs 
associated to research, development and production, can direct the 
preferences for the use of exogenous hemostatic factors as diagnostic 
instead of therapeutic tools. It has to be taken into consideration 
that biochemical, biophysical and pharmacological properties of a 
recombinant protein might not be completely the same as its native 
form, reflecting on the biological activity. Numerous procoagulant 
proteins have been isolated in their native form from animal venoms, 
mainly from snakes. They have been sequenced and cloned, but the 
majority has not been functionally expressed as recombinant molecules. 
However, many efforts have been currently applied in this sense.

Opportunely, the number of studies dedicated to the production 
of recombinant proteins as tool for health care and biotechnology 
has risen over the last few years. For example, there are publications 
reporting the production of recombinant Batroxobin [114] and 
Ancrod [115-116] in Pichia pastoris, a yeast vector. Pichia pastoris is 
now being elected for the expression of recombinant proteins with 
therapeutic purposes due to advantages as the presence of a post 
translational modification machinery, which is absent in prokaryotic 
expression systems, and the cost-effectiveness and easy-to-assemble 
cultivation system suitable for up scaling in comparison to E. coli and 
Saccharomyces [117]. Other exogenous procoagulant proteins that 
have been functionally expressed as recombinant molecules are the 
prothrombin activators from the snake Pseudonaja textiles [118] and 
from the Lonomia obliqua caterpillar (Lopap) [4], respectively.

The research and development involving the use of procoagulant 
proteins are still incipient in comparison to the use of exogenous 
inhibitors in the therapeutic field. One of the reasons could be the 
management and unpredictable effects of its enzymatic activity in the 
human organism, in addition to its immunogenic potential. Although 
several toxins that act as activators or inhibitors in the hemostatic 
system have been described and well characterized, much have to 
be investigated regarding their other possible roles in the organism. 
These biological effects are currently under investigation for various 
toxins from different poisoning species, and can provide additional 
data related to the understanding of the complex reactions involved 
in poisoning. The multi-faced physiological action of endogenous 
and exogenous factors can be explained by a converging evolution of 
distinct activities in a same molecule, or a common molecular evolutive 
origin [25]. In the case of exogenous factors, the structure-function 
relationship suggests that a molecule with intrinsic roles for the animal 
could have acquired another function, which would provide advantages 
for animal defense, attack or feeding purposes, for instance [119].

The knowledge about the non-hemostatic effects of the exogenous 
factors can point out new targets for disease control and therapy, and 
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concomitantly bring new perspectives for the use of these proteins in 
the study and treatment of a wide range of dysfunctions. In this regard, 
studies of site-directed mutagenesis and sequence mapping can be 
considered as an interesting tool, allowing the removal of undesired 
enzymatic activities. In addition, the diversity of known exogenous 
factors and the innumerous recently identified also suggest that there 
are many other molecules to be discovered, which could belong to the 
established classes or even present new biochemical properties. 
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