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Introduction
A Dynamic control system (DCS) is a system of devices or set of 

devices, that manages commands, directs or regulates the behaviour 
of other device(s) or system(s) to achieve desired results through the 
use differential equations or mathematical models. In other words the 
definition of control system can be rewritten as a control system is a 
system, which controls other system [1].

 Day by day, the demand of automation is increasing accordingly. 
Automation highly requires control of devices. In recent years, control 
systems plays main role in the development and advancement of 
modern technology and civilization. Practically every aspects of our 
day-to-day life are affected less or more by some control system. A 
bathroom toilet tank, a refrigerator, an air conditioner, a geezer, an 
automatic iron, an automobile all are control system. These systems 
are also used in industrial process for more output. We find control 
system in quality control of products, weapons system, transportation 
systems, power system, space technology, robotics and many more. 
The principles of control theory are applicable to engineering and non-
engineering field both.

Method of Solution
Dynamics control system (DCS)

In applied mathematics and engineering the central theory deals 
with the behaviour of dynamical system over time. The dynamic 
behaviour of a system may therefore be understood by studying 
their mathematical description. For instance, the flight path of an 
airplane subject to certain engine thrust, rudder elevation angles and 
particular wind condition or the current flowing in an electrical circuit 
consisting of interconnections of resistors, inductors, capacitors, 
transistors, diodes, voltage or current source etc. can be predicted using 
mathematical description of the pertinent behaviour. Mathematical 
equations in the form of Differential or difference equations are used 
to describe the behaviour of the process usually referred to governing 
equations whose solutions give the required response of the particular 

system under consideration [2-8].

A system is a group of component part put together to accomplish 
a certain task. It is also said to be an arrangement or collection of things 
connected or related in such a manner as to form an entire whole. 
Simply, a system is an arrangement of physical component connected 
or related in such a manner as to form and or act an entire unit. 
Whereas the concept of Control is analogous as either to direct, regulate 
or to command. Thus a Control System is an arrangement of physical 
components connected or related in such a manner as to command, 
direct and regulate itself or another system. It is therefore important 
to note that a control system is made up of three components namely; 
input, process and output.

Control theory: Is an interdisciplinary branch of engineering and 
mathematics that deals with the behavior of dynamical systems with 
inputs, and how their behavior is modified by feedback. The usual 
objective of control theory is to control a system, often called the plant, 
so its output follows a desired control signal, called the reference, which 
may be a fixed or changing value. To do this a controller is designed, 
which monitors the output and compares it with the reference. The 
difference between actual and desired output, called the error signal, 
is applied as feedback to the input of the system, to bring the actual 
output closer to the reference. Some topics studied in control theory 
are stability (whether the output will converge to the reference value or 
oscillate about it), controllability and observability.

Extensive use is usually made of a diagrammatic style known as 
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the block diagram. The transfer function, also known as the system 
function or network function, is a mathematical representation of 
the relation between the input and output based on the differential 
equations describing the system [9-16].

Although a major application of control theory is in control 
systems engineering, which deals with the design of process control 
systems for industry, other applications range far beyond this. As the 
general theory of feedback systems, control theory is useful wherever 
feedback occurs. A few examples are in physiology, electronics, climate 
modeling, machine design, ecosystems, navigation, neural networks, 
predator-prey interaction, gene expression, and production theory. 

Mathematical classification of systems

In this paper we shall not dwell on a comprehensive classification 
of systems as this may not give the much desired understanding of 
the concept. Hence an enumeration of the more common classes of 
systems most often encountered in field of engineering and science 
is of high consideration. Any particular set of equation describing a 
given system generally depends on the effect to be captured. Some of 
these systems may include Lumped Parameter or Finite-Dimensional 
Systems; Distributed Parameters or infinite-Dimensional Systems; 
Continuous-Time and discrete-Time Systems; Deterministic and 
Stochastic Systems and appropriate combination of any of the fore 
mentioned is known as hybrid systems. It must however be noted that 
the appropriate mathematical setting for Finite-Dimensional System are 
Finite-Dimensional Vector Spaces and for infinite-Dimensional system 
are defined Infinite Dimensional Linear Spaces. Continuous-Time 
Finite-Dimensional Systems are described by Ordinary Differential 
Equations or some kinds of integral Equations while Discrete-Time 
Finite Dimensional Systems are governed by Ordinary Difference 
equations or Discrete- Time Counterparts to those Integral equations. 
The governing differential equations to Infinite-Dimensional Systems 
include partial Differential equations Volterra intergro-Differential 
Equations, Functional Equations etc. [17-22]. 

Finite-dimensional system

This is mainly concerned with continuous-time and Discrete-time 
finite dimensional system.

The continuous-time finite dimensional dynamic system for our 
consideration will be those described by the following set of governing 
differential equations:

( )1 2 1 2, , ,... , , ,... , 1,2,3,...= =i i n mx f t x x x u u u i n

( )1 2 1 2, , ,... , , ,... , 1,2,3,...= =i i n my g t x x x u u u i p  

where ui,i = 1(1)m denote the inputs or the stimuli; yii = 1(1)p denote 
outputs or responses; xi,i = 1(1)n represent state variables; t denotes 
time ix  denote time derivatives of state variables; fi,i = 1,2,3,…n, real 
value functions of 1 + m + n real variables; gi,i = 1,2,3,….p, real value 
function of 1 + m + n real variables.

A complete description of the system will usually require a set of 
initial conditions;

xi(t0) = xi(0), i = 1,2,3,…..,n where t0 is initial time.

In most cases of practical application, there often arises the need to 
impose constraints on the quantities fi, gi and ui.

Definition of basic terms

Open loop control system: An opened-loop controlled system is 

that in which the control action is independent of the output of the 
system Manual control system is also an open loop control system. 
Figure 1 shows the block diagram of open loop control system in which 
process output is totally independent of controller action. 

Closed-loop control system: Control system in which the output 
has an effect on the input quantity in such a manner that the input 
quantity will adjust itself based on the output generated. As such the 
system of car engine overheating brake failure is categorized under the 
closed loop control system due to the fact that respective inputs depend 
upon the respective outputs of the system. 

Feedback loop of control system: A feedback is a common and 
powerful tool when designing a control system. Feedback loop is the 
tool which takes the system output into consideration and enables the 
system to adjust its performance to meet a desired result of system.

In any control system, output is affected due to change in 
environmental condition or any kind of disturbance. So one signal is 
taken from output and is fed back to the input. This signal is compared 
with reference input and then error signal is generated. This error signal 
is applied to controller and output is corrected. Such a system is called 
feedback system. Figure 2 shows the block diagram of feedback system.

When feedback signal is positive then system called positive 
feedback system. For positive feedback system, the error signal is the 
addition of reference input signal and feedback signal. When feedback 
signal is negative then system is called negative feedback system. 
For negative feedback system, the error signal is given by difference 
of reference input signal and feedback signal [23-26]. Some of the 
characteristics of feedback include

1) Increases accuracy oscillation

2) Tendency towards instability

3) Reduces the sensitivity of ratio output to variation in system 
parameters

4) Reduces effect of nonlinearity

5) Reduces the effect of external disturbance or noise

6) Increases bandwidth.

For a given set of differential equations describing a certain 
dynamical system (system that changes with time) there is need to 

Figure 1: Closed-loop control system.

 

Figure 2: Closed-loop control system.
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Where fj are in general nonlinear functions of the arguments

Similarly, the system output variables may also be expressed as 
follows:

( )
( )
( )

1 1 2 1 2

2 2 1 2 1 2

3 3 1 2 1 2

, ,... , , ,... ,

, ,... , , ,... ,

, ,... , , ,... ,

=
= 


= 







i m p

m p

m p

y g x x x u u u t

y g x x x u u u t

y g x x x u u u t

			                (2)

Where '
kg  s, are in general nonlinear functions.

In the event that non-linear elements are present in the system the 
functions fj(j = 1(1)m) and gk(k = 1(1)m) also turn out to be non-linear 
and quite complex in nature thereby making the analysis or solution 
complicated.

Matrix vector formalism

This involves the representation of equations 1,2 more conveniently 
using matrix-vector form by the following definitions:

1 1 1

2 2 2

1 1

2 2

, , ;

lg

     
     
     = = =      
     

           


    
    
    = =
    
    
       

  

 

m m m

m m

x f y
x f y

X is state vector F as the function Y output vector

x f y

g u
g u

G a ebraic Function and U input vector

g u

   (3)

Thus; the state variable equations are represented by

( ), ,X F x u t= 					                  (4)

And the system output as

( ), ,Y G x u t= 					                   (5)

As expected the complexity associated with the general formulation 
reduces considerably for the case of a linear system. In the event that all 
the elements in the model of a dynamical system are linear the algebraic 
functions (fj and gk) appearing in equations (1) and (2) will take the 
following special forms:

1 11 1 12 2 13 3 11 1 1

2 21 1 22 2 23 3 21 1 2

3 31 1 32 2 33 3 31 1 3

\ 1 1,1 1 2,2 2 3, 1,1 1 1,

\ 1 1 2 2 1 1

− − − − − −

= + + + + +

= + + + + +

= + + + + +

= + + + + +

= + + + + +


 


 


 




 


 

r r

r r

r r

m m m m m m m m p p

m m m mm m m mp p

x a x a x a x b u b u
x a x a x a x b u b u
x a x a x a x b u b u

x a x a x a x b u b u
x a x a x a x b u b u











  (6)

know the set of state variables and there number in the system. That is;

i) How many state variables are involved?

ii) What are these state variables?

For (i) above; the number of state variables is equal to the total 
number of initial conditions required to completely solve the differential 
equations of overheating for a car engine. For instance, if a dynamic 
system is described by a single second order differential equation then 
two initial conditions is required to completely solve the differential 
equation. Thus there are two state variables for this system. For (ii); 
these variables for which initial conditions are required for the solution 
of the governing differential equation defined above are chosen as the 
required state variables.

An example of such a control system is a car's cruise control, which 
is a device designed to maintain vehicle speed at a constant desired 
or reference speed provided by the driver. The controller is the cruise 
control, the plant is the car, and the system is the car and the cruise 
control. The system output is the car's speed, and the control itself is 
the engine's throttle position which determines how much power the 
engine delivers.

A primitive way to implement cruise control is simply to lock the 
throttle position when the driver engages cruise control. However, 
if the cruise control is engaged on a stretch of flat road, then the car 
will travel slower going uphill and faster when going downhill. This 
type of controller is called an open-loop controller because there is no 
feedback; no measurement of the system output (the car's speed) is used 
to alter the control (the throttle position.) As a result, the controller 
cannot compensate for changes acting on the car, like a change in the 
slope of the road [27].

In a closed-loop control system, data from a sensor monitoring the 
car's speed (the system output) enters a controller which continuously 
subtracts the quantity representing the speed from the reference 
quantity representing the desired speed. The difference, called the error, 
determines the throttle position (the control). The result is to match the 
car's speed to the reference speed (maintain the desired system output). 
Now, when the car goes uphill, the difference between the input (the 
sensed speed) and the reference continuously determines the throttle 
position. As the sensed speed drops below the reference, the difference 
increases, the throttle opens, and engine power increases, speeding up 
the vehicle. In this way, the controller dynamically counteracts changes 
to the car's speed. The central idea of these control systems is the 
feedback loop, the controller affects the system output, which in turn is 
measured and fed back to the controller. This example is also similar to 
detecting car brake failure by the concept of control system as will be 
discussed in details by some governing DE.

General formulation

Once the state variables are appropriately selected the next step 
is to construct the state variable equations. These state equations are 
system of first order differential equations in the state variables on the 
left hand side and algebraic system (function) of the state variables as 
system input and possibly time on the right hand side. In general for a 
multi-input multi-output system with m state variables we have

x1,x2,x3,…xm,p inputs u1,u2,u3,…up, and r outputs

y1,y2,y3,…yr, the state variable equations are given in this form:
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1 11 1 12 2 1 11 1 12 2 1

2 21 1 22 2 2 21 1 22 2 2

1 31 1 32 2 3 31 1 32 2 3

1 1,1 1 2,2 2 1, 1,1 1 1,2 2 1,

1 1

− − − − − − −

= + + + + + + +

= + + + + + + +

= + + + + + + +

= + + + + + +

= +

 

 

 



  

m m p p

m m p p

m m p p

r r r r m m r r r p p

r r r

y c x c x c x d u d u d u
y c x c x c x d u d u d u
y c x c x c x d u d u d u

y c x c x c x d u d u d u
y c x c 2 2 3 1 1 2 2










+ + + + +   m m r r rp px c x d u d u d u

  (7)

By defining the following quantities to enable us represent the 
formulations above in matrix-vector form:

11 12 1

21 22 2

1 2

11 12 1

21 22 2

1 2

,

×

×

 
 
 
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   

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  
    





  
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A State matrix
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		               (8)
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1 2 1 2

,

× ×
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 

 

     

 

m m

m m

r r rm r r rp
r m r p

c c c d d d

c c c d d d
C Output Matrix D

c c c d d d

    (9)

Therefore, the final form of the system in the matrix-vector form 
is given as:

= +X AX BU 	State equation			              (10)

= +Y CX DU 	 Out equation 			              (11)

The above system of equation is known as the state-space 
representation or state-space form of the system model. This very 
convenient form of representing a system model is particularly useful 
in the analysis and control of a dynamic system (Figure 3).

Where ϑ and τ represent responses of sequences of decisions to be 
responded as either (Yes/No) respectively while ρ represents the total 
chances of decisive events that requires an absolute response at a time, 
hn is the input generating function and kn is the equiprobable response 
generating function [28-30].

Governing Differential Equations for Diagnosing Brake 
Problems

Suppose there is said to be a resulting fault in stopping the car then 
the DE gives the formulation for detecting the several decisions to be 
taken to the highest order of resolution given as:

1
1

1
η

 + + + = 
  A A A A h 				                  (12)

Certainly if it has decided to say clearly there is no such brake fault 
exist then there exist a free stable state system given by the DDE below:

2
2

1
η

 + + + + = 


   B B B B B h 		                               (13)

Also; if there is said to be optimistic dragging from the wheel the 
DE is thus deduced for such a given conditioned and defined system as:

3
3

1
η

 + + + = 
  C C C C h 			                                (14)

I the situation is however realistically known to say that there exist 
some elements of noises; therefore the DDE is also generated for such 
a conditioned system as:

4
4

1
η

 + + + + = 


   D D D D D h 			                (15)

Conversely if there exist no such situation of condition as that 
given in the governing DE in equation (15) the DE below provides an 
alternative formulation via Figure 1. For the absence of noise in the 
system described as:

5
5

1
η

 + + + = 
  E E E E h 				                (16)

Similarly, if there exist no brake warning light rattles then we have 
the DDE:

6
6

1
η

 + + = 
 F F F h 				                  (17)

From equation (13) and (16) we thus have the State Variable 

Equations (SVE) as:
1 3

2 4

3 5

4 2 4 5 5

5 6

6 1 3 5 6 2 2

` η

η

=


= 


= 


= − − + 
= 
= − − − − + 













f f

f f

f f

f f f h

f f

f f f f f h

			               (18)

Expressing equation (18) in a matrix vector form gives the Matrix 
State Space Representation (MSSR) of the State Variable Equation 
(SVE) and hence the State Equation (SE) is deduced thereafter.

 

Figure 3: Expert/Dynamic system representation using block diagram.
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             (19)

Hence the State Equation (SE) for the diagnosis is given by equation (20):

= +F AF Bh 					               (20)

Similarly if by using equation (14) and (15) to formulate another 
SVE as well as MSSR for the given system for the described system to 
be decisively diagnosed. Thus; equation (21) below gives SVE for the 
described system as:

1 2 3 4 5 6

5 6 7 7
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If equation (21) is expressed in a matrix vector form gives the 
Matrix State Space Representation (MSSR) of the State Variable 
Equation (SVE) and hence the State Equation (SE) can be deduced in 
the usual form as:

1 1

2 2

3 3

4 4

55

366

477

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 ( )
0 0 0 0 0 0 1 0
0 1 0 1 0 1 0

1 0 1 0 1 0 1
η
η

                                = +                   − − −            − − − −       















D D
D D
D D
D D h t

DD
DD
DD














              (22)

Thus; the State Equation (SE) for the diagnosing process is given 
by equation (23):

= +D AD Bh 					                   (23)

By considering equation (12) and (15) to formulate another SVE as 
well as MSSR for the given described system to be decisively diagnosed. 
Thus; equation (24) below gives SVE for the described system as:
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Again; if equation (24) is expressed in a matrix vector form gives 
the Matrix State Space Representation (MSSR) of the State Variable 
Equation (SVE) and hence the State Equation (SE) is also deduced as:
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therefore; equation (26) gives the State Equation (SE) for the diagnosing 
process as:

= +E AE Bh 					                 (26)

Practical Illustration of an Expert System using 
Dynamic Control System
Output equations

From equation (18) suppose the input is say h1 (Brakes Stop Car?) 
(Figure 4):

Suppose the response is ‘yes’; then the resulting output equation 
becomes:
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And the equivalence Expert System graphics output (Figure 5).

Figure 4: Interface trying to verify whether brake stops the car when applied.
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Similarly, if the input/output (response implied) as h2 (Parking 
Brake Failure?) is yes (Input Response) then the governing output 
equation becomes:

( ) [ ] [ ]
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And the equivalence Expert System graphics output is given by 
Figure 6. Similarly, if the input (response implied) as h3 (Rear Wheel 

Locked?) is yes (Input Response) then the governing output equation 
becomes:
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Hence the output interface is thus given by Figure 7.

Thus; the suggested output in Figure 4 gives the general solution of 
the problem for the sequence of responses n (Yes). This is to say that the 
detected problem is either ‘Spring Return Failure or Cable Rusted or 
Bound’ as expressed in equation (32).

Conversely; if the response is NO for the inputs say h1 (Brakes Stop 
Car?) in Figure1 then by equation (18) the output equation is thus 
formulated as:
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Figure 5: Sample interface displaying how parking brake faults can be 
detected.

 

Figure 6: Interface displaying whether rear heel is locked.

Figure 7: ES Interface trying to detect spring return failure.
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And the equivalence Expert System graphics output is given 
(Figure 8).

Similarly, if the input (response implied) as h2 (Parking Brake 
Failure?) is No (Input Response) then the governing output equation 
becomes:
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Figure 9: An interface displaying how pedal faults can be detected.

Figure 8: An interface trying to detect brake faults.
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And the equivalence Expert System graphics output is given by 
Figure 9.

Similarly, if the input (response implied) as h3 (Rear Wheel 
Locked?) is yes (Input Response) then the governing output equation 
becomes:
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Hence the output interface is thus given by Figure 10.

This is to say that equation (37) and Figure 8 gives the general 
solution for τn responses.

Signal Flow Diagrams
In this section, signal flow diagrams of equations modelled in this 

paper will be illustrated as appropriate [31].

 

Figure 10: An interface displaying pedal linkage binding, glazed...finally 
detected.
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Figure 11: Signal flow.

Figure 12: Signal flow diagram for equation 21.

Figure 13: Signal flow diagram for equation 24.

Considering signal flow diagram for equations (18), (21) and (24) 
respectively below:

By equation (18) the signal flow is thus given in Figure 11.

Similarly, Figure 12 gives the signal flow diagram for equation (21):

Again, the signal flow diagram for equation (24) is deduced in the 
Figure 13.

Result and Discussion
A typical representation of an expert system has been displayed 

using the concept of Dynamic Control System as seen in the expressed 
differential equations. More so, through the use of block diagram 
representations, the governing differential equations of a DCS were 
deduced from the concept of an Expert System. It is therefore very clear 
to re capture the decisive process of converting decisions made from an 
Expert System to a DCS. Therefore a further DCS alternative general 
response can be deduced for both (Yes/No) decisions made by an ES 
using the symbol notations of ϑ and τ for Yes/No responses respectively. 
The equation below gives a general stage process of decision making for 
detecting car brake fault by an ES using a modelled DCS output general 
equation of the form:
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  (40)

Figures 1-3 demonstrates how a control system can dynamically be 
used in multiple decisions of responses by a user say in an ES especially 
Figures 1 and 2. Conversely, Figure 3 gives a dynamic differential form 
of the entire processes of decisions made during the detection by an ES 
for a car engine brake faults.

Similarly, Figures 4-10 displays the graphical interface generated 
by an ES which by the use of signal flow diagrams gives the signal flow 
diagrams (Figures 11-13) through the modelled equations (18), (21) 
and (24) for detecting brake failure relative to decisions made by an ES 
for sequence (hn, τn), αn and βn for Yes/No responses respectively.

Conclusion
A DCS has been used to describe the dynamical state of decisions 

made by an ES. Series of input and output equations were represented 
as the equivalence input/output of an ES. It is therefore noted that a 
DCS can be employed in diagnosing/detecting car engine brake failure 
in real life applications for any given ES through modelled dynamic 
system of differential equations, block diagrams and signal flow 
diagrams. 
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