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Introduction
The basic method for the stability analysis of nonlinear time-discrete 

systems is the Lyapunov functions one, cf. [1,2]. By this method many 
very strong results are obtained, but finding Lyapunov’s functions is 
often connected with serious mathematical difficulties. Explicit stability 
stability conditions for nonlinear multivariable systems are established 
mainly in the case of autonomous linear parts, cf. [3-9].

In the present paper we investigate a class of discrete-time 
systems governed by semilinear vector difference equations with non-
autonomous linear parts. Explicit stability conditions are suggested. 
They are formulated in terms of the eigenvalues of the coefficients 
and constants characterizing the nonlinearities. It is shown that the 
suggested stability conditions are sharp.

Let n be a Euclidean space of n-complex vectors endowed with a 
scalar product (.,.) and the Euclidean norm = (.,.)⋅  , I is the identity 
matrix  and := { : }n

r h h rω ∈ ≤    for a positive r≤∞. Our main object 
is the equation 

uk+1=Akuk+Fk(uk) (k=0,1,…),        (1)

Where Ak(k=0,1,…) are n×n-matrices Fk:ωrn are mappings 
satisfying 

||Fk(w)||≤vk||w|| (w∈ωr)         (2)

Where vk are given non-negative constants.

The zero solution of system (1) is said to be exponentially stable 
if there are constants M≥1,ζ∈(0,1) and >0, such that ||uk||≤Mζk ||u0|| 
(k=1,2,…) for any solution uk of (1), provided ||u0||<δ.

Introduce the notations. For an n×n matrix A,A* is the adjoint 
one; λk(A),k=1,…,n, are the eigenvalues of A, counted with their 
multiplicities; ||A||=suph∈n||Ah||/||h|| is the spectral (operator) norm 
of A; rs(A) is the spectral radius. The following quantity (the departure 
from normality of A) plays a key role hereafter: 
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Where |A|F=(Trace AA*)1/2 is the Frobenius (Hilbert-Schmidt norm) 
of A. If A is a normal matrix: AA*=A*A, then g(A).
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If Ak is a normal matrix, then 
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Now we are in a position to formulate our main result. 

Theorem 1

Let the conditions (2), (3) and 
2 2

1 1[ ( ) (2 )] < 1sup k k k k k k k k k
k

A A A A Aµ µ ν ν− −− + + +                        (5)

hold. Then the zero solution of (1) is exponentially stable. 

The proof of this theorem is divided into a series of lemmas which 
are presented in the next two sections. Below we show that condition 
(5) is sharp.

From inequality (8) proved below it follows that
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Now Theorem 1 implies

Corollary 1

Let the conditions (2), (3) and 
2 2

1 1ˆ ˆ[ ( ) (2 )] < 1sup k k k k k k k k k
k

A A A A Aµ µ ν ν− −− + + +       

hold. Then the zero solution of (1) is exponentially stable. 
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The following relations are checked in [10] 
* 2

2 2 2 2 2| |( ) | | | | ( ) = 2 | | ,
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Where AI=(A-A*)/2i. If A1 and A2 are commuting matrices, then 
g(A1+A2)≤g(A1)+g(A2). By the inequality between geometric and 
arithmetic mean values we have 
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So 2 2 2/( ) | | ( ) n
Fg A A n det A≤ − .

Auxiliary Results
Let A and C be n×n matrices and rs(A)<1. The equation

Y-AYA*=C           (6) 

has a unique solution Y(A,C), cf. [11]. Put 
( , )( ) := sup

n nC

Y A Cq A
C×∈

 

 

where n×n is the set of all n×n matrices.

Due to Corollary 3 from [12], 
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Recall that 
1 = 0

( )!m j−  for m<j. From (7) it follows
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Proof of Theorem 1
Let Qk be a solution of the equation

* =k k k kQ A Q A I− .                    (9)

First, let r=∞. Then from (1) and (2) we have 

1 1( , ) = ( ( ( )), ( ))k k k k k k k k k k k kQ u u Q A u F u A u F u+ + + +

*( , )) ( , ( )) ( ( ), ) ( ( ), ( ))k k k k k k k k k k k k k k k k k k kA QA u u Q A u F u Q F u A u Q F u F u= + + +

2 2(( ) , )) (2 )k k k k k k k kQ I u u Q A uν ν≤ − + +     

2 2
1 1( , ) (( ) , ) ( , ) (2 )k k k k k k k k k k k k k kQ u u Q Q u u u u Q A uν ν− −= + − − + +     

2 2
1 1( , ) ( 1)( , ) (2 )k k k k k k k k k k k kQ u u Q Q u u Q A uν ν− −≤ + − − + +       

.

If
2

1 (2 ) < 1k k k k k kQ Q Q A ν ν−− + +     

,                  (10)

Then

(Qkuk+1,uk+1)≤(Qk-1uk, uk)≤…≤(Q0u1,u1).

But Qk≥I. So

(uk+1,uk+1)≤(Q0u1,u1)≤||Q0||(A0u0, A0u0).            (11)

Now by a small perturbation we arrive at the following result.

Lemma 1

Let the conditions (2) with r= and (10) hold. Then the zero solution 
to (1) is (globally) exponentially stable. According to (11), under (10) 
there is a constant γ independent of u0, such that ||un||≤γ ||u0||. So taking 
||u0||<r/γ we can remove the condition r=∞.

Furthermore, the equation 
* =k kY A YA C−                     (12)

has a unique solution Y(Ak,C) for any C. Put 

( , )( ) := sup k
k

n nC

Y A Cq A
C×∈

 

 

                   (13)

To estimate ||Qk-Qk-1||, note that 
* *

1 1 1 1= .k k k k k k k kQ Q A Q A A Q A− − − −− −

Denote Yk=Qk-Qk-1 and ∆k=Ak-Ak-1. Then
* =k k k k kY A Y A C− , where * *

1:=k k k k k k kC A Q Q A− ∆ + ∆ .

Due to (13) ||Qk||≤q(Ak) and Yk≤q(Ak)||Ck||. In addition, 

1 1( ) ( ) ( )k k k k k k k k kC Q A A q A A A− −≤ ∆ + ≤ ∆ +              

So 
2

1 1 1= ( ) ( ).k k k k k k k kQ Q Y q A A A A A− − −− ≤ − +         

Thus, Lemma 1 implies 

Corollary 2

Let 2 2
1 1( ( ) ( ) ( )(2 ) < 1.sup k k k k k k k k k

k
q A A A A A q A A ν ν− −− + + +       

Then the zero solution to (1) is exponentially stable. 

Proof of Theorem 1: From (7) it follows q(Ak)≤µk. Now the previous 
corollary implies the required result.

Example
Let Ak(k=0,1,…) be normal matrices. Then condition (5) takes the 

form
2

1 12 2 2
1 1[ ( ) (2 )] < 1sup

(1 ( )) 1 ( )k k k k k k k
k s k s k

A A A A A
r A r A

ν ν− −− + + +
− −

         (14)

In particular, if Ak≡A is constant, then due to (4) from (14) it follows 

2
2

1 ˆ ˆ(2 ) < 1.
(1 ( ))s

A
r A

ν ν+
−

 

where ˆ := sup kkν ν . But ||A||=rs(A). So 2 2 2ˆ ˆ2 ( ) < 1 ( )s sr A r Aν ν+ −

and therefore, the exponential stability test under the consideration is 

ˆ( ) < 1sr A ν+                      (15)

This condition shows that Theorem 1 is sharp. Indeed, take 
ˆkF w wν≡ . Then condition (15) is necessary for the exponential stability. 

So Theorem 1 is really sharp.
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