Exposure of Engineered Nanomaterials and Its Potential Contribution to Alzheimer’s Pathophysiology

Xudong Huang*

Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.

Being the most common form of senile dementia, Alzheimer’s disease (AD) affects 5.4 million Americans, and at least $183 billion was spent in 2011 on care of AD and other dementia patients. The problem is worsening as life expectancy continues to increase. By 2050, the projected number of AD patients could range from 11 to 16 million people in the United States alone if no cure or preventive measure for AD is found. Hence, AD has quickly become a pandemic and exacted a huge socioeconomic toll [1].

AD is manifested by a gradual onset of a progressive and irreversible cognitive decline. Memory impairment appears in the earliest stage of the disease followed by motor and sensory impairment in the later stages [2]. Genetic, biochemical, and neuropathological data indicate that AD is a multifactorial, polygenic, and complex disease. The majority of AD cases are sporadic or late onset AD (LOAD) while 5-10% of cases are early-onset familial AD (FAD) with an autosomal dominant inheritance pattern. The neuropathology of AD is characterized by the accumulation of insoluble Aβ amyloid peptides generated from amyloid precursor protein (APP), neurofibrillary tangles (NFTs, the misfolded microtubule-associated tau protein) [3], neuronal cell death (including apoptosis), associated neuroinflammation and cerebral redox stress in postmortem AD brain, and compromised brain energy metabolism [4-5,6]. More recent data also indicate that the BBB is leaky in AD brain [7]. However, environmental risk factors that contribute to AD pathology are not known [8].

Growing experimental evidence has implied that exposure of metal/metal oxide nanoparticles such as Fe2O3, CuO, and ZnO due to increasing use of these engineered nanomaterials (ENMs), may promote the pathophysiology of neurodegenerative disease such as AD. Indeed, metal exposure has been suggested as a risk factor for AD, the most studied ones being Al, Hg, and Pb [9,10,11]. There is an abnormal enrichment of metals such as Fe, Cu, and Zn in amyloid plaques from AD brain [12,13]. Further, positive surface charges on the nanoparticles could alter the blood-brain barrier (BBB) integrity and may be a contributing factor to brain toxicity [14]. Additionally, experimental data on ovalbumin-sensitized BALB/c mice indicate that components of inhaled nanoparticulate matter may trigger a proinflammatory response in brain that could contribute to the pathophysiology of neurodegenerative diseases such as AD [15]. Moreover, nanoparticle-enhanced protein fibrilization of human β2-microglobulin has recently been shown [16], and TiO2 nanoparticles have been shown to promote Aβ fibrillation by shortening the nucleation process [17]. Nanoparticles seem to catalyze protein fibrillation [18] which may have strong implications for many protein fibrillation and misfolding-related human diseases including AD. More importantly, epidemiological findings strongly suggest that long-term exposure to severe air pollution (highly possible exposure of metal oxide nanoparticles) is associated with the salient neuropathological features of AD: neuroinflammation, BBB disruption, and Aβ1-42 accumulation [19,20]. Moreover, our previous studies indicate that CuO nanoparticles induce potent in vitro neurotoxicity [21,22].

However, the knowledge gap exists as no relevant in vivo nanoneurotoxicity data for these metal oxide nanoparticles are currently available. In particular, in vivo CNS response to their exposure and the correlation of response to the exposure with the neuronal dysfunction in neurodegenerative diseases such as AD is not known. Hence, in vivo animal data collected from this line of warranted research may reveal in vivo mechanisms of its potential contribution to AD pathophysiology. Further, they will have broader impact upon nanoneurotoxicity and neurodegeneration research field which is currently very nascent [23]. More importantly, they will also provide some scientific basis for public policy regulation on exposure of ENMs.

References

*Corresponding author: Xudong Huang, Ph.D., Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA, E-mail: xhuang3@partners.org

Received July 22, 2013; Accepted July 24, 2013; Published July 31, 2013

Copyright © 2013 Huang X. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
• User friendly/feasible website-translation of your paper to 50 world’s leading languages
• Audio Version of published paper
• Digital articles to share and explore

Special features:
• 250 Open Access Journals
• 20,000 editorial team
• 21 days rapid review process
• Quality and quick editorial, review and publication processing
• Indexing at PubMed (portal), Scopus, EBSCO, Index Copernicus and Google Scholar etc
• Sharing Option: Social Networking Enabled
• Authors, Reviewers and Editors rewarded with online Scientific Credits
• Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.org/submission