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Introduction and Context
We consider a compact Lie group G acting as a gauge group of 

automorphisms of the fibre algebra A(x). Recall [1-4] that A(x) is 
a Quantum Operator Algebra; a von Neumann algebra with trivial 
centre acting (up to isomorphism) on a separable Hilbert space F(x), 
and that locally the fibre bundle is a product bundle. We define a 
section algebra O(D) as the closure in the ultraweak operator topology 
of the set of all such fibre algebras with the algebraic operations 
defined fibrewise ( ) ( ){ }; 

w
O DD

σ−
∈= xA x  with the base D a suitable 

subset of spacetime of physical interest. It can be characterised as the 
dual space of it predual O(D)* which consists of all normal, density 
matrix, states. Consider a representation of the compact Lie group G 
as automorphisms : ( ) for ( ),gg A A O D g Gα α→ ∈ ∈ . We introduced the 
crossed product algebra O(D) × G and the linkage between partitions 
and von Neumann entropy (also known as quantum or entanglement 
entropy) [3].

Assume (by taking a faithful representation if necessary) that 
O(D) acts on a Hilbert space H. Define the Dirac distribution 
function εg to take the value 1 at g and zero elsewhere on G. Then {εg; 
g∈G} is an orthonormal basis for the Hilbert space l2(G) Given l2(G) 
and H we can form the tensor product Hilbert space H⊗ l2(G). If 

: ( ) for ( ),gg A A O D g Gα α→ ∈ ∈ , define;

1( )  for ,  ,

( )( ) ( )  for ( ),
h g gh

g g g

U x x x H g h G

A x A x A O D g G

ε ε

ε α ε

−⊗ = ⊗ ∈ ∈

Φ ⊗ = ⊗ ∈ ∈

Then Uh extends to a unitary operator on H⊗ l2(G)and the mapping 
h→Uh is a unitary representation of the compact Lie group G on H⊗ 
l2(G). Similarly, Φ(A) extends to a bounded linear operator on H⊗ 
l2(G)for all sections A in O(D) and the unitary representation h→Uh 
implements the automorphic representation h→αh.

The transformation Φ is an ultraweakly continuous isomorphism 
of O(D) and it follows that Φ(O(D)) is a von Neumann algebra 
embedding. Finite sums ( )

jg j
j

U AΦ∑  form a *algebra which contains 

Φ(O(D)). The cross product algebra O(D) × G is defined as its closure for 

the ultraweak operator topology (equivalently its double commutant).

Given a partition of a locally curved space-time region into subsets 
D(1), D(2),….,D(n) we have from early foundational work that;(O(D1) 
× G) ⊗ (O(D2) × G) is isomorphic to (O(D1) × G) × (G × G=G2) if we 
assume that by induction we have a similar result for the case n-1 then; [5].

Applying to the algebras ( ) ( )
1

1

1
( ( ( )  , ( )

n
n

j
O D j G D n G

−
−

=

× ×⊗  implies that; 

( )
1

( ( ( )
n

n

j
O D j G

=

×⊗  is isomorphic to (O(D1) × G) ⊗…. (O(D(n) × G).

Hence by induction this expression must hold for all values of n. As 
an example let us we partition the event horizon D of a Black Hole as a 
subset of space time into n subsets D(1), D(2),….,D(n), then it follows, 
assuming that we have a section algebra O(D that in each subset we can 
locate a non-trivial section algebra O(D(j)). Choose a fibre algebra from 
each section algebra with a non-trivial state space which is generated by 
its extreme points – the pure states. This implies that corresponding to 
each partition element D(j) we can associate a pure state f(j).

In quantum ergodic theory, the partition of a space into measurable 
subsets corresponds to a level of information about location in the 
space and this is measured by the information entropy of the partition 
[3]. Hawking’s analysis of black hole dynamics; see for example links 
the black hole event horizon surface area, partitions of that area, and 
measures of information entropy [6]. The quantum equivalent of a 
partition is the density operator k k k k k

k k
p y y p Eρ = >< =∑ ∑  ie the 

weighted sum of the projections Ek onto the vector spaces.
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Abstract
The fibre bundle construct defined in our previous work continues to be the context for this paper; quantum fields 

composed of fibre algebras become liftings of; or sections through; a fibre bundle with base space a subset of curved 
space-time. We consider a compact Lie group such as SU(n) acting as a local gauge group of automorphisms of 
each fibre algebra A(x). Compact Lie groups, represented as gauge groups acting locally on quantum fields, are key 
elements in electroweak and strong force unification. In our recent joint work we have focused on the translational 
subgroup of the Poincare group as the generator of local diffeomorphism invariant quantum states. Here we extend 
those algebraic non-perturbative approaches to address the other half of unification by considering the existence of 
quantum states of the fibre algebra A(x) invariant to the action of compact non-abelian Lie groups. Wigner sets are 
complementary to little groups and we prove they have the finite intersection property. Exploiting this then allows us 
to show that invariant states are common in the sense that the weakly closed convex hull of every normal (density 
matrix) state contains such an invariant state. From these results and our related research emerges the existence of 
a locally invariant density matrix quantum state of the field.
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{ }( ) ( ) : ; , ( )gv G v g x x g G x X fα= → ∈ ∈
.

Mathematically, we note that since G is compact and f° αg: G → 
A(x)* is weakly measurable and thus weakly continuous; this implies 
that f° α(G) is σ(A(x)*A(x))-compact. The Krein-Smulian theorem, then 
shows that X(f) is also a σ(A(x)*A(x))-compact set [10]. Thus X(f) is a 
non-void σ(A(x)*A(x))-compact convex subset of the locally convex 
Hausdorff linear topological space of ultraweakly continuous linear 
functionals acting on the fibre algebra A(x). The group of mappings 

{ }( ) ( ) : ; , ( )gv G v g x x g G x X fα= → ∈ ∈  is, as we will now show, a non-
contracting (semi)-group of weakly continuous affine maps of X(f) 
onto itself.

If x, y are in X(f) then; 

|| || 1 || || 1| ( ) ( ) || sup || ( ) ( ) ( ) ( ) || sup || ( ) ( ) || || ||A A g gg x g y g x A g y A x A y A x yn n n n a a£ £- = - = - = -   
since each αg is a continuous bijection. Thus if x¹y and S=the weak 
closure of { }( ) ( ) ( ) ( );g x A g y A A A(x)n n- Î  then 0Ï S.

Thus each mapping n(g)is non-contracting. Also, each n(g) is affine, 
since for A in A(x) and 0 ≤ λ ≤ 1.

( ) ( ){ } ( ) ( ) ( ) ( )(1 ) ( ) ( ( )) (1 ) ( ( )) (1 )g gg x y A x A y A g x A g y An l l l a l a ln l n+ - = + - = + -  

We can therefore, apply the Ryll-Nardzewski fixed point theorem 
to establish the existence of an invariant normal state contained in X(f). 
The physical implications highlight the role of what we have termed 
Wigner sets [11].

Given g∈G, define the winger set of the mapping n(g):X(f) → X(f) 
as the stabiliser set ( ) { }( );( ) ( ) .fg x X g x xν ν= ∈ =

More generally, given a finite subset { }( ) ; , 2,...  g j G j n∈ =  and 

corresponding mappings ( )( ){ }; , 2,...g j j nν = , we can construct the 

affine mapping ( )( )1 :  ( ) ( )
j

g j X f X f
n

ν
 

→ 
 
∑

We then define ( )( ){ } ( )( )1; , 2,...
j

g j j n g j
n

ν ν
  

=      
∑�  

We assert that the following relationship between Wigner sets 
applies;

( )( )( ) ( )( )1
j j

g j g j
n

n n
æ öæ ö÷ç ÷ç ÷÷ç ç= ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø

å

   		                (1)

Clearly if

( )( )( ) ( )( ) ( )( )

( )( ) ( )( )( ) ( )( )

1 1,..,

1 1 therefore 

j

j j

j

j

g j g j x x j n g j x x
n

x g j g j g j
n n

x n n n

n n n

æ ö÷ç ÷çÞ = " = Þ =÷ç ÷÷çè ø
æ ö æ öæ ö æ ö÷ ÷ç ÷ ç ÷ç ç÷ ÷÷ ÷ç çç çÞ Î Í÷ ÷÷ ÷ç çç ç÷ ÷÷ ÷ç ç÷ ÷ç ç÷ ÷ç çè øø

Î

ø èè è ø

å

å å

 





  

  

To complete the proof of eqn. (1) we now need to show that;

( )( ) ( )( )( )1
j j

g j g j
n

n n
æ öæ ö÷ç ÷ç ÷÷ç ç Í÷÷ç ç ÷÷÷ç ç ÷ç è øè ø

å 

   		                 (2)

This relation is trivially true for n=1.

If the result (2) is false then;

There is a minimum positive integer r ≥ 2 for which eqn. (2) fails.

For ease of exposition, denote the mapping ( )( )
1,..,

1( )
j r

T r g j
r

ν
=

  
=      

∑  

and the mappings ( )( )
1,..,

1, 1,....., . so that ( )j
j r

jg j j n T r
r

T Tn
=

=
æ ö÷ç ÷ç= = ÷ç ÷÷çè ø
å  all 

acting on X(f).

[| ]k kE H y= >  Corresponding to the normal pure state 

( ) : ,k k ky A y Ayω → . Then the von Neumann (quantum) entropy is 

defined as logj j
j

p p−∑ . We interpret it as an inverse measure of the 

amount of information that the quantum system in a given state will 
yield through measurement. The larger the entropy of the quantum 
system, the less information can be extracted.

By the ‘no hair’ theorem each n-partition must have the same 

weighting 
1

jp
n

= . The von Neumann entropy of this partition is thus 
given by logn; proportional to its surface area S, at the micro-level when 
it is partitioned into n cells in the Planck regime [7]. This relates to 

the classical macro-level Clausius definition of entropy E; 
Q E

T
δ

= ∆∫�  

where, integrated over a Carnot cycle, a change in energy δQ results in 
a change in entropy corresponding to a change in space-time curvature 
[8].

Measurability and Continuity
The weak topology σ(A(x)*A(x)) can be defined on the predual 

A(x)* as the coarsest topology for which elements of the predual are 
continuous. It is defined by a set of semi-norms p=|f| for f a density 
matrix linear functional which as a set are separating for A(x)*. 
Making minimal assumptions we let α:g → αg be a weakly measurable 
representation of the compact Lie group G as automorphisms of A(x). 
By this we mean that the induced mapping1 1

*: :gg f Gν α −→ → A(x)  is 
measurable for Haar measure on G and the σ(A(x)*A(x)) topology on 
A(x)* Since every positive element of A(x)*is a countable sum of vector 
states this is equivalent to the definition that v:g→ωx°αg:G→A(x)* is 
measurable for all x in the fibre Hilbert space F(x).

Given that the induced mapping v:g → f αg:G → A(x)* is measurable 
in the sense now defined above we have from ref. [9];

|| ( ) ( ) ( ) ( ) || || ( ) ( ) || || || 0 as g f A h f A g f h f A g hν ν ν ν− ≤ − → →   

This demonstrates the following result, which allows the extension 
of continuous gauge automorphic representations of compact Lie 
groups to their cross-product such as the Standard Model gauge group 

SU(3) × SU(2) × SU(1)

For the induced representation v:g → f αg:G → A(x)* on the predual 
of A(x), weak measurability is equivalent to weak continuity.

We next show, as we did for local diffeomorphism-invariant 
quantum states [1,4] that quantum states invariant under the action 
now of compact Lie groups are common in the sense that the weakly 
closed convex hull of every normal state contains such a state. We are 
now dealing with groups such as SU(n) which are both compact and 
non-abelian thus different techniques are required. To achieve this 
result we have developed a new idea based on group stabiliser theory 
which we call Wigner sets. These are complementary to little groups.

Wigner Sets and the Finite Intersection Property
Given a density matrix quantum state f, and a weakly 

measurable representation g →αg of a compact Lie group G as 
gauge automorphisms of the fibre algebra A(x); define the closed 
convex hull; { } *( ) ;gX f co f g Gα= ∈ ⊂ A(x)  with closure in 
the σ(A(x)*A(x))-topology. Define the group of isometric and 
σ(A(x)*A(x))-continuous transformations mapping X(f)→ X(f) by 
1For the rest of the paper we will ignore the inverse symbol in this definition to ease 
notational clutter.
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As noted earlier, since G is compact, the Krein-Smulian theorem, 
shows that X(f) is a ( )*( ) , ( )A x A xσ -compact set [10]. T(r) is an affine 
mapping on the compact convex set X(f) so by Schauder's extension 
of the Brouwer fixed point theorem has a fixed point x(r) in X(f) [10]. 
This implies that;

1,..,

1( ) ( ) ( ) ( )j
j r

T r x r T x r x r
r =

 
= = 

 
∑  . 		                 (3)

By the definition of r as the minimum integer for which our 
assertion fails;

We must have an integer k ≤ r with

( ) ( )kT x r x r≠  				                   (4)

Suppose now that ( ) ( )rT x r x r=

Then

( ) ( )( )( )
1

1 1 1 1
1,..,

1
,.. ,

1
. 1

( ) ( ) ( ) ( ) ( ... ) ( ) ( ) ( ... ) ( ) ( )

1( ) ( ... ) ( ) ( ) ( 1)
( 1)

( ) ( ) for all 1...,
j r

j r r r
j r

r

j

rx r rT r x r T x r T T x r T x r T T x r x r

x r T T x r x r T r g j
r

T x r x r j r

ν

− −
=

−
= −

 
= = = + + + = + + + 

 

⇒ = + + ⇒ ∈ − =
−

=⇒ =

∑   

  

But by definition of k at (4) we have a logical contradiction.

By reordering the sum 
1,..,

( )j
j r

T x r
=

 
 
 
∑   we can relabel r by any 

j=1,…,r..

In summary, we have shown that if our assertion at equation (2) is 
false then;

Tj°x(r)¹x(r) for all j=(1,..r)			                  (5)

Let S be the sub group generated by the finite set{Tj=n(gj);j=(1,…r) } 
and let K(r) be the weakly closed convex hull of { }( );S x r S ÎS . Since 
the set of mappings n(G) is non-contracting, and Tjx(r)¹ for all j=(1,..r) 
there is a continuous semi-norm p on X(f) with;

( ) ( )( ) ( )  1,..., ,jp ST x r Sx r j r Se- > " = ÎS  	                (6)

We will prove that this implication of (3) also gives rise to a 
contradiction, exploiting now part of the argument [11,12].

Since S is finitely generated, it follows that K(r) is separable, as well 
as being a weakly compact, convex subset of the dual space of A(x). It 
has the appropriate geometric and topological properties for to apply 
[12]. Thus for the given ε > 0 above there is a proper closed convex 
subset C of K(r) with; the p-diameter of K(r)\C=sup (p(x-y);x,yK(r)\C 
≤ 

K(r)\C is non-void, and K(r) is the weakly closed convex hull of 
{ }( );S x r S ÎS , thus we can choose a mapping S such that Sx(r)∈K(r)\C. 
Now our chosen S is an affine mapping, therefore;

1( ) ( ) ( ) ( )j
j

Sx r ST r x r ST x r
r

æ ö÷ç ÷ç= = ÷ç ÷÷çè ø
å

C is a convex set, thus not every STjx(r) can be a member of C, 
otherwise the expression above would then imply that Sx(r)∈C. Thus, 
for some j, STjx(r)∈K(r)\C.

We thus have;

Sx(r)∈K(r)\C and STjx(r)∈K(r)\C. But for the seminorm p,p-
diam(K(r)\C)≤. Thus for some j;

( )( ) ( ) .jp ST x r Sx r e- £

This contradicts eqn. (6), showing that there is no minimum 
positive integer r ≥ 2 for which eqn. (2) fails. and we have proved our 

assertion on the relation between Wigner sets;

( )( )( ) ( )( )1
j j

g j g j
n

n n
æ öæ ö÷ç ÷ç ÷÷ç ç= ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø

å

 

Invariant Normal States
It is now easy to prove that X(f) contains a fixed point for the 

group of isometric and σ(A(x)*A(x))-continuous transformations 
( ) ( ){ }( ) ; , ( )gv G v g x x g G x X fα= = ∈ ∈ .

We have that ( )( )1
j

g j
n

ν
  
     

∑  is a (A(x)*A(x))-continuous 

affine mapping on the compact convex set X(f) it has a fixed point 
x (applying again Schauder’s fixed point theorem [10]). Then 

( )( )1
j

x g j
n

� n
æ öæ ö÷ç ÷ç ÷÷ç çÎ ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø

å .

The expression;

( )( )( ) ( )( )1
j j

g j g j
n

n n
æ öæ ö÷ç ÷ç ÷÷ç ç= ÷÷ç ç ÷÷÷ç ç ÷ç è øè ø

å

 

Shows that the Wigner sets (v(g)) have the finite intersection 

property since ( )( )( )
j

g jν  is non-void. Clearly each Wigner 

set is a (σ(A(x)*A(x))) closed subset of the compact set X(f) thus 
( )( ) .

g

gν ≠ ∅  If ( )( ) g g
g

h g h h h g Gν ν α∈ ⇒ = = ∀ ∈  . Thus h is 

the required invariant quantum state.

The proof shows that quantum states invariant under the action 
of compact Lie groups are common in the sense that the weakly closed 
convex hull of every normal state contains such an invariant state.

Separating States and Locally Invariant Fields
With possible applications to weak measurements as in we define 

a separating (or total) family of G-invariant quantum states to be a 
finite or countable subset of the state space such that the positive 
kernel of S is zero [13-15]. Applied to a single state this implies that 
the GNS mapping π(f) is an isomorphism, and given an observable A 
in the positive subset of the fibre algebra A(x),F(A*A)=0 Þ A=0 This 
implies that if f=wx°π (f) then our definition is a weaker form than the 
definition of ξ as a separating vector for the algebra π(f) (A(x)); see 
for example [16]. If the Hilbert space F(x) on which the fibre algebra 
A(x) acts is separable then by the argument of [4] there is a separating 
(in our sense) normal state j on A(x) and each element of the weakly 
closed convex hull { }( ) ;gX f co f g Gα= ∈�  is also separating. Thus 
there is a separating normal invariant quantum state Y=Y(A(x) for 
each fibre algebra.

Conclusion
Stitching these together in the obvious way we can 

create a locally G-invariant quantum state Ψ of the field 

( ) ( ) ( ) with ; | ( )A A x x D A xA x= Y = YÎ .
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