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Introduction
The most well-known result in the theory of fixed points is Banach’s 

contraction mapping principle. Bessem, Calogero and Pasquale [1] 
proved the theorem of existence of fixed point of α - φ - contraction 
mapping in complete metric space. They discussed the Banach 
contraction principle with some generalized contraction conditions 
and weakened the usual contraction condition. 

Many researches [1-4] have studied the fixed point theorem on the 
complete metric space (X, d), however, there are few results for the 
existence of fixed point on the complete metric space (H(X), h) with the 
use of fixed point theorem on (X, d) [5-14].

The aim of this paper is to obtain the fixed point theorems of the 
some generalized contractions in complete metric space (H(X), h). 
Before we establish the fixed point theorems in metric space (H(X), h), 
we discuss some basic results. In [1], Bessem Samet, Calogero Vetro, 
Pasquale Vetro proved the following results in the complete metric 
space.

Denote with Φ the family of non-decreasing functions 
:[0, ) [0, )φ +∞ → +∞  such that 

1
( )n

n
tφ+∞

=
< +∞∑  for each t > 0, where 

φn the n-th iterate of φ.

Definition 3.1

Let (X, d) be a metric space and :f X X→  be a given mapping. 

We say that f is an α - φ - contraction mapping if there 
exist two functions : [0, )X Xα × → +∞ and φ ∈ Φ such that

( , ) ( ( ), ( )) ( ( , ))x y d f x f y d x yα φ≤ , for all x, y ∈ X. If α(x, y) = 1 for all 
x, y ∈ X and φ(t) = kt for all t ≥ 0 and some k ∈ [0,1], then :f X X→  
satisfies the Banach contraction principle. There is example involving a 
function f that is not continuous [1]. 

If α(x, y) = 1for all x, y ∈ X and lim ( ) 0n

n
tφ

→+∞
=  for all t > 0 (not 

necessarily 1
( )n

n
tφ+∞

=
< +∞∑  for each t > 0), then :f X X→  satisfies a 

condition of the Matkowski’s contraction theorem [14].

Definition 3.2

Let :f X X→  and : [0, )X Xα × → +∞ .We say that f is α- admissible 
if x, y ∈ X, ( , ) 1 ( ( ), ( )) 1x y f x f yα α≥ ⇒ ≥  [1]. 

Theorem 3.1

Let (X,d) be a complete metric space and :f X X→  be an α - φ - 
contraction mapping satisfying the following conditions [1]: 

(1) f is α - admissible;

(2) There exists x0 ∈ X such that α (x0, f(x0)) ≥ 1;

(3) f is continuous.

Then, f has a fixed point, that is, there exists x* ∈ X such that f(x*) = x*.

This fixed point theorem extended the results of Banach’s
contraction principle and Matkowski’s fixed point theorem.

Main Results
We now give the theorems of fixed point of the some generalized 

contractions in the complete metric space (H(X), h). Let (X, d) be a 
metric space and H(X) the class of all nonempty compact subsets of X. 
That is, H(X) denotes the space whose points are the compact subsets 
of X, other than the empty set. 

Define 

d (A,B)=max{ d(x, B): x ∈ A}.

d (A,B) is the distance from the set A ∈ H(X) to the set B ∈ H(X).

Define : ( ) ( ) [0, )h H X H X× → +∞  by ( , ) : max{max min ( , ), max min ( , )},
y B x Ax A y B

h A B d x y d x y
∈ ∈∈ ∈

=

for all A, B ∈ H(X). The metric space (H(X), h) is complete provided 
that (X, d) is complete [6-8]. The classical iterated function system 
(IFS) consists of a finite family of Banach contractions on X to itself. 
Then there is a unique nonempty compact invariant subset of X with 
respect to these contractions. In what follows, we extend these IFS by 
considering a family of α - φ - contractions.

We assume that (X, d) is a complete metric space and :f X X→  is a 
continuous mapping on the metric space (X, d) such that 
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* ** *( , ) ( , ) ( ( ), ( )) ( ( ), ( ))h A B d x y h f A f B d f x f y= ⇔ =  for all A, B ∈ 
H(X).

Because :f X X→  is a continuous mapping on the metric space (X, 
d), Ff maps H(X) into itself. 

Define : ( ) ( )fF H X H X→  by ( ) : ( )fF A f A=  for all A ∈ H(X).

Example 4.1

Shows that there are continuous functions such that 
* ** *( , ) ( , ) ( ( ), ( )) ( ( ), ( ))h A B d x y h f A f B d f x f y= ⇔ = for all A, B ∈ H(X).

Example 4.2

Let ( , )X = −∞ +∞  and Let 1( ) : , ( , )
3

f x x x= ∈ −∞ +∞ . 

Then * * * *( , ) ( , ) ( ( ), ( )) ( ( ), ( ))h A B d x y h f A f B d f x f y= ⇔ =  for all A, B 
∈ H(X). 

In the following example, we show that there are continuous 
functions on a complete metric space which are not continuous 
functions such that 

* ** *( , ) ( , ) ( ( ), ( )) ( ( ), ( ))h A B d x y h f A f B d f x f y= ⇔ =  for 
all A, B ∈ H(X).

Example 4.3

Let ( , )X = −∞ +∞ .

Let ( ) : 4 (1 )f x x x= − , 1: [0, ]
8

A =  and 5 7: [ , ]
8 8

B = . Then 3 1 7( , ) ( , )
4 8 8

h A B d= =  
and

3 7 15 7 7 1 7( ( ), ( )) ( , ) ( , ) ( ( ), ( ))
4 16 16 16 16 8 8

h f A f B d d d f f= = ≠ = .

That is, for some A, B ∈ H(X),

* * * * * * * *{( , ) | ( , ) ( , )} {( , ) | ( ( ), ( )) ( ( ), ( ))}x y h A B d x y x y h f A f B d f x f y= ≠ = . 

Let : [0, )X Xα × → +∞  be a function. 

We define : ( ) ( ) [0, )H X H Xαα × → +∞  by 
* * * * * *( , ) : inf{ ( , ) | ( , ) ( , ), , }A B x y d x y h A B x X y Yαα α= = ∈ ∈ .

If α(x, y) = 1 for all x, y ∈ X then ( , ) 1A Bαα =  for all A,B ∈ H(X).

Lemma 4.1

If f is α - admissible then Ff is αα -admissible. 

Proof: Let ( , ) 1A Bαα ≥ .

Since * * * * * *( , ) inf{ ( , ) | ( , ) ( , ), , } 1A B x y d x y h A B x X y Yαα α= = ∈ ∈ ≥ , for 

all * *,x A y B∈ ∈  such that * *( , ) ( , )h A B d x y= , * *( , ) 1x yα ≥ .

Because f is α - admissible, * *( ( ), ( )) 1f x f yα ≥ . 

By definition of f, if h(A,B) = d(x*, y*) then h(f(A),f(B)) = d(x*),f(y*)). 
Hence 

( ( ), ( )) ( ( ), ( ))f fF A F B f A f Bα αα α=
* * * * * *inf{ ( ( ), ( )) | ( ( ), ( )) ( ( ), ( )), ( ) ( ), ( ) ( )}f x f y d f x f y h f A f B f x f X f y f Yα= = ∈ ∈

* * * * * *inf{ ( ( ), ( )) | ( , ) ( , ), , }f x f y d x y h A B x X y Yα= = ∈ ∈ .

For all x* ∈ A, y* ∈ B such that h(A,B) = d(x*, y*), α (x*,f(y*)) ≥ 1.

So * * * * * *inf{ ( ( ), ( )) | ( , ) ( , ), , } ( ( ), ( )) 1f ff x f y d x y h A B x X y Y F A F Bαα α= ∈ ∈ = ≥ .

Therefore, if , ( ); ( , ) 1A B H X A Bαα∈ ≥  then ( ( ), ( )) 1f fF A F Bαα ≥ .

That is, Ff is αα -admissible. 

Lemma 4.2

If there exists X0 ∈ X such that α (x0, f(x0)) ≥ 1, then there exists A0 
∈ H(X) such that 

0 0( , ( )) 1fA F Aαα ≥ .

Proof: Let 0 0: { } ( )A x H X= ∈ . 0 0 0 0( , ( )) ( , ( ))fA F A A f Aα αα α=

0 0 0 0 0 0 0 0 0 0inf{ ( , ( )) | ( , ( )) ( , ( )), , ( ) ( )}x f x d x f x h A f A x A f x f Aα= = ∈ ∈

0 0( , ( )) 1x f xα= ≥ . 

The system {X, fi: i = 1, 2,…, N} consisting of a family of continuous 
maps :if X X→ , will be called iterated function system, shortly IFS on 
X. We define 

1 , , : ( ) ( )
Nf fF H X H X→



 by

1, ,
1

( ) : ( )
N

N

f f i
i

F A f A
=

=




 

for all A ∈ H(X). The image of A Xϕ ≠ ⊂  under fi is given by
( ) : ( )i i

x A

f A f x
∈

=


.

We consider continuities that are meant in the Hausdorff sense.

Map 
1 , , : ( ) ( )

Nf fF H X H X→


 is 

(1) Contraction, if there exists a Lipschitz constant 0 ≤ L < 1 such 
that  

1 1, , , ,( ( ), ( )) ( , )
N Nf f f fh F A F B L h A B≤ ⋅

 

 for all A,B ∈ H(X).

(2) Weak contraction, if there exists a comparison function φ∈Φ  
such that  

1 1, , , ,( ( ), ( )) ( ( , ))
N Nf f f fh F A F B h A Bφ≤

 

 for all A,B ∈ H(X).

(3) Continuous at ( )H X , if 

( ), 0, ( , ) 0, ( )( ( , ) ( , ));A H X A B H X h A B Aε δ ε δ ε∀ ∈ ∀ > ∃ > ∀ ∈ <

1 1, , , ,; ( ( ), ( ))
N Nf f f fh F A F B ε<

 

.

Remark 4.1

If fi for all i=1, 2,…, N is Banach contraction then 
1, , Nf fF


 is Banach 
contraction too [12].

If fi for all i=1, 2,…, N is weak contraction then 1 , , Nf fF


 is weak 
contraction too [14]. 

Let {X, fi: i=1, 2,…, N} be a IFS consisting of continuous functions. 
Now, we give a counter-example involving a map 

1 , , : ( ) ( )
Nf fF H X H X→



 
that is not continuous.

Counter-Example 4.1

Consider the functions

1

0, 0
( )

2 , 0
x

f x
x x

≤= − >
 And 2

2 , 0
( )

0, 0
x x

f x
x

− ≤=  >
.

Then, 1 2( ) ( ) 0n nf x f x= = for all n ≥ 2 and for all x ∈ R.

Moreover, since
2

1, 2
1

( ) : ( )i
i

f x f x
=

=


, 1, 2 1, 2
{ }

({ }) : ( )
x x

f x f x
∈

=
  and

1 2

2

, 1, 2
1

({ }) ({ }) ({ })f f i
i

F x f x f x
=

= =


,

1 2, ({ }) {0, 2 }f fF x x= − , 
1 2

2
, ({ }) {0, 4 }f fF x x=  and 

1 2, ({ }) {0, ( 2) }n n
f fF x x= −  

for all 0x ≠ .

1 2, ({0}) {0}f fF = , 
1 2

2
, ({0}) {0}f fF =  and 

1 2, ({0}) {0}n
f fF = .
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Since for all fixed x > 0, 
1 2 1 2

2 2 2
, ,( ({ }), ({0})) ( 2)n n n

f f f fh F x F x= − → +∞  
and

1 2 1 2

2 1 2 1 2 1
, ,( ({ }), ({0})) ( 2)n n n

f f f fh F x F x− − −= − →−∞  As n→+∞ ,

1 2 1 2, ,( ({ }), ({0}))n n
f f f fh F x F  is not convergence. It is clear that 

1, , Nf fF


 is not continuous at {0}. This demonstrates the discontinuity 
of

1 2,f fF . 

So we assume that for all i = 1, 2,…, N,

:if X X→ are continuous mappings such that 
1, , : ( ) ( )

Nf fF H X H X→


 
is a continuous mapping. 

Lemma 4.3

:f X X→  is a α - φ - contraction mapping. Then

( , ) ( ( ), ( )) ( ( , ))f fA B h F A F B h A Bαα φ≤ .

That is, : ( ) ( )fF H X H X→  is a αα φ− -contraction (with the same 

function φ).

Proof New let A,B ∈ H(X). Then 

( , ) ( ( ), ( )) ( , ) ( ( ), ( ))f fA B d F A F B A B d f A f Bα αα α⋅ = ⋅

( ) ( )( ) ( )
( , ) max min ( ( ), ( )) ( , ) max min ( ( ), ( ))

f y f B y Bf x f A x A
A B d f x f y A B d f x f yα αα α

∈ ∈∈ ∈
= ⋅ = ⋅

* * * * * *inf{ ( , ) | ( , ) ( , ), , } max min ( ( ), ( ))
y Bx A

x y d x y h A B x X y Y d f x f yα
∈∈

= = ∈ ∈ ⋅

* * * * * * * *inf{ ( , ) | ( , ) ( , ), , } ( ( ), ( ))x y d x y h A B x X y Y d f x f yα≤ = ∈ ∈ ⋅

* * * * * *( , ) ( ( ), ( )) ( ( , )) ( ( , ))x y d f x f y d x y h A Bα φ φ≤ ⋅ ≤ ≤ .

Similarly

( , ) ( ( ), ( )) ( ( , ))f fA B d F B F A h A Bαα φ⋅ ≤ .

Hence
( , ) ( ( ), ( ))f fA B h F A F Bαα

max{ ( , ) ( ( ), ( )), ( , ) ( ( ), ( ))} ( ( , ))f f f fA B d F A F B A B d F B F A h A Bα αα α φ= ⋅ ⋅ ≤ . 

This completes the proof.

Theorem 4.1 

Let(X, d) be a complete metric space and :f X X→  be an α - φ - 
contraction mapping satisfying the following conditions: 

(1) f is α -admissible; 

(2) There exists 0x X∈  such that α (x0, f(x0)) ≥ 1;

Then the mapping : ( ) ( ( ))fF A f A A H X→ ∈  is an 
αα φ− -contraction 

(with the same function φ) too from H(X), into itself. That is, Fj has 
fixed point and there exists k ∈ H(X) such that Ff(K) = K.

Proof: (H(X), h) is a complete metric space [6,7] and by Lemma 
1, Lemma 2 and Lemma 3, : ( ) ( )fF H X H X→  is an αα φ− -contraction 
mapping satisfying the following conditions: 

(1) Ff is αα - admissible; 

(2) There exists A0 ∈ H(X) such that 0 0( , ( )) 1fA F Aα ≥ ;

(3) Ff is continuous. 

Hence by Theorem 1.1, Ff has a fixed point Ff(K) = K ∈ H(X). 

The next Theorem provides an important method for combining 

contraction mappings on (H(X), h) to produce new contraction 
mappings on (H(X), h).

Theorem 4.2

Let (X, d) be a complete metric space and for i=1, 2,…, N, 
:if X X→  be an α - φ - contraction mapping satisfying the following 

conditions: 

(1) fi is α -admissible for all i=1,2,…,N; 

(2) There exists 0x X∈  such that 0 0( , ( )) 1ix f xα ≥  for all i=1, 2,…, N.

Then the mapping 
1 , , Nf fF


 is an αα φ− - contraction too from 

H(X) into itself. That is, 
1, , Nf fF


 has fixed point K ∈ H(X) such that

1 , , ( )
Nf fF K K=



.

Proof: We demonstrate the claim for N = 2. An inductive argument 
then completes the proof. Let A, B ∈ H(X). By Lemma 2.3,

1 1
( , ) ( ( ), ( )) ( ( , ))f fA B h F A F B h A Bαα φ≤  And

2 2
( , ) ( ( ), ( )) ( ( , ))f fA B h F A F B h A Bαα φ≤ .

Because for A, B, C and D, in H(X) ( , ) max{ ( , ), ( , )}h A B C D h A C h B D≤   
[8],

1 2 1 2, , 1 2 1 2( , ) ( ( ), ( )) ( , ) ( ( ) ( ), ( ) ( ))f f f fA B h F A F B A B h f A f A f B f Bα αα α=  

1 1 2 2( , )max{ ( ( ), ( )), ( ( ) ( ))}A B h f A f B h f A f Bαα≤ 

1 1 2 2max{ ( , ) ( ( ), ( )), ( , ) ( ( ) ( ))} ( ( , ))A B h f A f B A B h f A f B h A Bα αα α φ≤ ≤

Hence 
1 2, : ( ) ( )f fF H X H X→  is a αα φ− -contraction mapping. 

Let 0 0: { } ( )A x H X= ∈ . Since 
1 20 , 0 0 1 0 2 0( , ( )) ( , ( ) ( ))f fA F A A f A f Aα αα α=  , 

0 1 0( , ( ) 1x f xα ≥  and 0 2 0( , ( ) 1x f xα ≥ , 
1 20 , 0( , ( )) 1f fA F Aαα ≥ .

 So 
1 2,f fF  is αα -admissible (cf. proof of the Lemma 2.1).

Hence the result of theorem follows from the Theorem 1.1. This 
completes the proof.

Corollary 4.1 

Let (X, d) be a complete metric space and for all i = 1, 2,…, N, 
:if X X→  be an i iα φ− - contraction mapping satisfying the following 

conditions: 

(1) fi is iα -admissible for all i = 1, 2,…, N; 

(2) There exists 0x X∈  such that 0 0( , ( )) 1i ix f xα ≥  for all i = 1, 
2,…, N.

Then the mapping 
1, , Nf fF


 is an αα φ− -contraction too from H(X) 

into itself. That is, 
1 , , Nf fF


 has fixed point K ∈ H(X) such that 

1, , ( )
Nf fF K K=



, where 
1

( ) : max ( )ii N
t tφ φ

≤ ≤
=  and

1
( , ) : min ( , )

ii N
A B A Bα αα α

≤ ≤
= .

Proof: Since ( ) : max ( )
i N

t tφ φ
≤ ≤

 is non-decreasing continuous 
functions, it is obvious. 
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