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Introduction
Modeling and forecasting of traffic activity pertains to basic 

tasks of traffic information provision [1-5]. For this purpose we have 
recently utilized a non-parametric statistical approach [6,7]. The 
model was created by using records of traffic flow rate in the past and 
is now applicable for prediction of traffic activity on the network of 
high-ways in Slovenia. The corresponding predictor was incorporated 
into an intelligent unit for forecasting of traffic flow rate and is used 
in the traffic information center at Ljubljana [8]. The goal of this 
article is to show how the applicability of this unit can be stretched to 
forecasting of traffic jams caused by various disturbances on high-ways 
[9]. For this purpose forecast data about traffic flow rate have to be 
transformed into jam characteristics. Here we consider forecasting of 
the number of jammed cars in front of disturbance as is for example a 
road section of decreased visibility due to fog, increased slipperiness, 
installed bottleneck, an accident, etc [9]. These disturbances can be 
most simply characterized by a decreased desired speed that is further 
used as a parameter in a corresponding analytical model describing the 
dynamics of traffic flow. To develop such a model we formulate a new 
fundamental diagram of traffic flow and use it in the formulation of 
partial differential equations describing the dynamics of traffic flow at 
a disturbed section [2,5,10,11]. These equations provide for prediction 
of jam evolution if we know the input flow [9]. For this purpose we 
describe in the next section the non-parametric statistical method of 
traffic flow forecasting, that is in the subsequent sections joint with 
analytical prediction of traffic jam evolution [6-8,12]. The applicability 
of the proposed method is then demonstrated by forecasting the 
evolution of traffic jam caused by a reduced desired speed at the point 
of maximal traffic activity on a high-way close to Ljubljana.  

Our treatment contains two mathematical models: one for 
prediction of traffic flow at a critical section [6-8] and the other 
for a transformation of predicted flow into characteristics of jam. 
Professional literature contains many articles describing various 
approaches to modeling and resulting versions of both models [1-
5,10,11]. They can be generally divided into micro- or macroscopic 
ones and deterministic (analytical) or statistical ones. By reviewing 
and testing their applicability we have found that in our case the most 
appropriate is the macroscopic treatment with the statistical description 
of the input flow to the disturbed section and the deterministic 
analytical description of the jam evolution. 

Statistical Forecasting of Traffic Flow 
The road traffic is a consequence of population activity that is 

generally of stochastic character [2-5,10]. Its proper description in a 
real situation is thus inevitably related with application of statistical 
methods [6,12]. However, the population activity is to certain extent 
synchronized by social agreements and environmental conditions 
that could be most simply described by calendar and hour. The 
synchronization renders possible simultaneous statistical description 
as well as quite accurate prediction of the mean properties of traffic 
activity on a complete roads network of a country [6-8]. Since our 
goal is to develop a general computational method that could be well 
applied for forecasting of local properties of traffic activity at various 
roads without any presumptions we here avoid analytical modeling of 
activity and follow just non-parametric statistical approach described 
in the following text [12].

The traffic activity at a certain road section is characterized by the 
flow rate Q(t) in dependence of time t [1-5,10,11]. The corresponding 
time series {Q(t), Q(t-1),..} is usually recorded by a counter, while 
weather observation and forecasting services provide time series of 
various environmental and other driving variables {V(t), V(t-1),..}. These 
variables also represent the hour and type of day [6-8]. The joint time 
series  represents the traffic state vector S={Q(t),Q(t-1),..;V(t),V(t-1),..}. 
Its record forms the data-base pertaining to a particular observation 
point. Since there are generally many observation points on a road 
network, the complete traffic activity represents a dynamic field [2-6]. 

Traffic participants and information providers often want to 
know what would be the traffic load in the future. The answer could 
be obtained by the non-parametric method of chaotic time series 
modeling and forecasting [12]. For this purpose we treat the traffic flow 
as a non-autonomous chaotic process and describe its generation by 
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the mapping relation [6-8]: 

( ) ( ) ( ) ( ) ( )( )1 ,.., ; 1 ,..,Q t F Q t Q t V t V tτ τ= − − − −                   (1)

In order to extract the function F(…) from given records we 
consider the state vector S=(Q(t),.,Q(t-τ);V(t),.,V(t-τ)) as a stochastic 
variable that can be characterized statistically by N samples {Sn ; n=1 
,.., N} if the joint probability density function is expressed by the 
Parzen’s kernel estimator [12]. Equation (1) indicates that the first 
component of the state vector: P=Q(t) should be predicted from the 
remaining ones: R=(Q(t-1),.,Q(t-τ); V(t),.,V(t-τ)). Since we want to 
avoid any presumptions about the relationship between P and R we 
may not describe it parametrically by some regression function but 
have to specify it non-parametrically. As shown elsewhere, [12] an 
optimal non-parametric statistical predictor is the conditional average 
Ppr(R)=E[P|R]. It can be derived from the Parzen’s kernel estimator and 
expressed in terms of N samples {Sn=(Pn, Rn), n=1,…, N} as [12]:
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The kernel w(…) corresponds to some approximation of the delta 
function, as for example a Gaussian one, in which σ corresponds to a 
characteristic distance between sample points Rn. Predictor in Eq. (2) 
describes a general non-parametric regression that corresponds to a 
normalized radial-basis-function neural network [12]. Its structure 
is objectively specified just by the set of samples, while σ represents 
the inaccuracy of observation [12]. In order to use the proposed non-
parametric estimator in modeling of traffic flow rate, we consider again 
Eq. (1) and interpret variables on its right side as the condition  R and 
the variable on the left side as the value of the flow rate P=Q(t) which 
we want to predict by Eq. (2). However, for this purpose we have to 
provide the condition R at a time t of interest. 

Before the application of Eq. (2) we must specify the dimension 
of the state vector S by the value of parameter τ. Since it is generally 
not known in advance how many past values have to be utilized in 
modeling, we can proceed to a proper value of τ by observing the 
performance of the forecasting at increasing τ. For this purpose we 
describe the performance quantitatively by the correlation coefficient r 
between predicted and observed time series of the traffic flow rate [6-8].

In our case we utilize records of traffic flow rate collected in the 
past over one hour time intervals by automatic counters on roads 
network in Slovenia [6-8]. Although shorter time intervals could 
be of advantage, we use one hour intervals, since the corresponding 
data are commercially available on CD-s and provide for rather broad 
application of the method described in this article. As a representative 
example we here select a point of maximal traffic activity on a high-
way close to Ljubljana. A record contains data about physical time 
of measurements and flow rate of various categories of vehicles. The 
time was transformed to a periodic hour-variable H that is uniformly 
increasing from 1 to 24 over each day. More demanding is a proper 
transformation of time to a proper day-variable. Phenomena depending 
on population activity essentially depend on the character of the day 
which we consider here as the driving variable of the traffic [6-8]. 
Based upon minimization of information cost function, expressed 
by the sum of information content and redundancy assigned to flow 
records of various days, we have found the following optimal code D: 
1-Monday, 2-day after holiday, 3-normal working day, 5-Friday, 6-day 
before holiday, 7-Saturday, 9-Sunday, 10-holiday. Numerical analysis 
has shown that a more detailed specification of code values practically 

does not contribute to the quality of modeling. Among categories 
of vehicles we at present consider just the category of personal cars. 
Consideration of other categories does not represent any obstacle, but 
the time of calculations is increased that is not convenient for broad 
application of the method on mobile telephones. One year long record 
of the considered flow rate is shown in Figure 1. The record reveals 
rather regular seasonal variation of flow rate over the year. In the 
modeling the influence of seasonal variation can be accounted for by 
forming the model based upon shorter intervals. In our treatment we 
use a record spanning one month. Beside seasonal variation, the record 
exhibits rather regular variation of traffic flow in normal working 
days and rather irregular variations in holidays. To point out this 
property we next consider two characteristic examples corresponding 
to a normal week in April and the week that includes holidays at May 
1st. For both cases the graphs of predicted Qp (solid) and original Qo 
(dotted) flow rate are shown together with variables D(t) and H(t) in 
Figure 2. When forecasting the flow the condition was comprised from 
the day-code D and the hour variable H alone. The agreement between 
predicted Qp and original Qo records of traffic flow rate shown in Figure 
2 is quantitatively demonstrated by the correlation plots in Figure 3. 
To each hour of week there corresponds a point (Qo, Qp) in the graph. 
From the distribution of points the correlation coefficient r and the 
linear regression line (solid) were determined.

The dotted line represents an ideal agreement between original and 
predicted data. The value of correlation coefficient r and the agreement 
between regression and dotted line indicates the quality of forecasting. 
The values r=0.98 and r=0.88 correspond to the normal week and the 
week with included holidays, respectively. These values correspond 
to rather extreme deviations from the mean value of correlation 
coefficient over the year that for the selected point of observation 
amounts <r>=0.94. This value indicates that the non-parametric 
statistical modeling and forecasting is on average quite successful.

Since the traffic develops on a network of roads it should be 
generally treated as a dynamic field Q(t,r) [2,6]. The same modeling 
as described above can be generalized to simultaneous prediction 
of traffic on the complete network of observation points; just the 
numerical procedure requires more time. In this case the mean value 
of correlation coefficient over the year and all observation points is 
<r>=0.965. Generally, the condition variables could include also the 
traffic flow at nearby points of observation and weather variables. 
Examination of such cases has shown that in our case the performance 
of modeling is not essentially changed [8]. 

Since the information about the traffic flow rate is of interest for 
participants in the traffic as well as for various services and agencies of 
the road authority, we have developed a graphic user interface (GUI) 
by which the predicted traffic flow field as well as a jam at a disturbed 
critical region of road can be demonstrated [8]. Its window is shown in 
Figure 4 and includes: three graphs and several buttons for controlling 
the GUI operation and selection of parameters for prediction. In the 
upper graph of the GUI the evolution of the predicted traffic flow field 
distribution is demonstrated by a movie. At a position of each counter 
on the road network the traffic activity is indicated by the radius of 
a color coded circle. The selected observation point is indicated by a 
horizontal and a vertical line. For the selected point of observation 
the dependence of the forecast traffic flow rate over the selected day 
is shown by the dotted line in the lower right graph. Its time series 
describes the flow of vehicles to the selected critical region where they 
are jammed. The flow that passes this region is shown by the solid 
line. The parameters of the critical region are set by the lower buttons. 
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The properties of jam are demonstrated in the lower left diagram. The 
method for estimation of jam properties is described in the later section 
of the article.

The GUI was developed in the Matlab environment and compiled 
into an executable version for broad application on MS Windows by 
various users. In such a form it is now utilized in the traffic information 
center in Slovenia. It was recently upgraded by a module for forecasting 
of traffic jams. The record of predicted flow rate is in this case used as a 
source of information for prediction of traffic jam. For this purpose the 
GUI is complemented by the analytical model of traffic flow dynamics 
as described in the next section.

Analytical Description of Traffic Flow Rate 
Dynamics of road traffic can be most thoroughly described by a set 

of rules that determine trajectories of particular cars [2-5]. However, 

such micro-dynamical description is usually too complex for on-line 
applications on mobile telephones or in traffic information centers 
where mean properties of traffic are mainly sought. Consequently, 
we turn to a macroscopic description based upon just two variables 
that describe the mean density ρ and velocity v of cars [2-5,10,11]. 
The corresponding mean flow rate Q=ρv is here considered as the 
basic variable for the description and analysis of the traffic state at 
the disturbed road section under consideration.  In a simple case of 
a steady and homogeneous traffic state the variables ρ and v do not 
depend on position and time, but they are mutually related. The graph 
of the corresponding relation v=v(ρ) represents the first fundamental 
diagram of traffic [2-5]. By the expression Q(ρ)=ρv(ρ) this diagram is 
transformed into the second diagram that represents the flow rate Q as 
a function of the density. 

Professional literature contains various forms of fundamental 
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Figure 1: Record of the traffic flow rate Q(t).
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Figure 2: Graphs of characteristic variables in a normal week (left) and in a week that includes a holiday (right). The step-like and saw-like curves 
represent the day-code D and the hour H, respectively. Dotted line-original, solid line-predicted Q(t). 
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diagram that correspond more or less to empirical data [2-5,10-11]. 
One could expect that the most acceptable form should result from a 
proper treatment of driving strategy and statistical treatment of the 
corresponding distribution that is related with physiological properties 
of drivers [5,10,13]. However, the problem is that it is very hard to 
describe these properties in a unique quantitative way and to relate 
them with the dynamics of real traffic flow. Consequently, the variety 
of published forms is stemming from intuitive propositions of their 
authors. In accordance with this situation we try to find a simple form 
of fundamental law that agrees well with empirical data and renders 
simple interpretation and expression of fundamental law by rational 
functions. To formulate it we consider quasi-static and homogeneous 
free flow of vehicles on a high-way with allowed maximal speed vo. We 
characterize the traffic state by the density ρ determined by the distance 
between cars r as: ρ=1/r. The most fundamental property of the traffic 
stems from the experience of drivers which adjust their velocity to 
the spacing between cars and allowed or desired speed vo. Measured 

data show [2,5] that at small spacing between cars (high density) this 
property can be approximately described by a linear relation  w=(r–
λ)/τ  in which λ denotes the mean car length, τ the mean reaction 
time of drivers, and w a characteristic velocity determined by the 
transition of the clear spacing between cars r–λ in the reaction time 
τ. In opposition to this, the velocity is approximately equal vo at high 
spacing (low density). To account both characteristics simultaneously 
we assume that a driver on average tries to keep the velocity v of the 
car bellow the characteristic value w, and also bellow the desired 
value vo. Consequently, we further considered the values w and vo 
as components of a composed constraint. In order to describe it we 
represent particular constraints by the inverse values 1/vo and 1/w and 
add them to get the following rule for the composed constraint: 1/v=1/
vo + 1/w. This rule indicates that the mean value v is below vo as well 
as below w. However, one could expect that still better expression of 
composed constraint could be obtained if a proper weight is assigned 
to particular terms in our rule. Such a weight should point out relative 
importance of one term with respect to another one; hence it is enough 
to assign a weight just to one term. We arbitrary assign a weight to 
the last term and assume that its importance grows with the increasing 
density of cars that corresponds to the decreasing value of w. The 
weight is then expressed relatively with respect to some characteristic 
parameter u which should be determined experimentally. Based upon 
this reasoning, the weight is expressed as u/w which yields the rule: 
1/v=1/vo + u/w2. Its more convenient form is given by the following 
expression for the velocity:

v=vo / (1+ u vo /w
2)=v(ρ)				                   (3) 

It is important that the characteristic value w depends on ρ=1/r and 
consequently, the last equation describes the fundamental traffic law 
v=v(ρ) and its first diagram. 
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In order to complete our description the parameter u has to be 
specified. Since its unit must coincide with the unit of velocity, we 
arbitrary put u=C λ/τ. Comparison of the rule Eq. (1) with the rules 
obtained from measured data has revealed that a good agreement is 
obtained if the value of constant is set to C=3.1. Simultaneously with 
this estimation, the following values: λ=4.5 m and τ=1.3 s have been 
estimated as proper ones. Figure 5 shows comparison of experimentally 
and theoretically determined fundamental diagram for the velocity 
v(ρ) in the case with the desired value vo =110 km/h. Similarly, Figure 
6 shows the corresponding second diagram for the flow rate Q(ρ). 
Experimental data are taken from the reference [2,10] and correspond 
to a high-way with desired speed 120 km/h that is decreased to the 
value vo =110 km/h due to the presence of trucks. In addition to this, 
the diagrams corresponding to the value vo =55 km/h are presented 
(--) in order to indicate the properties of the fundamental diagram 
corresponding to a half of the desired speed value. 

An important characteristic of the second diagram is the maximal 
value of the flow rate Qmax that determines the road capacity. The 
corresponding dependence has been determined numerically from the 
fundamental law and is shown in Figure 7. The capacity is decreasing 

with the decreasing value of desired speed. In Slovenia allowed velocity 
on high-ways is vo=130 km/h while most often observed allowed 
value on a disturbed section inside a bottleneck is vo=60 km/h. For a 
single lane the capacities are Qmax ~ 2.2*103veh/h; Qmax ~ 1.4*103veh/h 
respectively. One could expect that a jam appears when the flow to a 
disturbed road section reaches its capacity. In relation to calculation of 
road capacity by the derived fundamental law it ought to be mentioned 
that the maximal value of vo is determined by capabilities of drivers and 
cars even if allowed speed is not limited. 

Expression of the fundamental law by Eq. (3) is rather 
advantageous since it is simple and includes just rational functions that 
enable inversion which is not the case with many other models [5]. In 
addition, the interpretation of included parameters is straightforward 
and agreement with experimental data is rather good. 

In our derivation of the law Eq. (3) we considered quasi-steady and 
homogeneous traffic state. However, this is not the case when treating 
evolution of traffic jams. Since the derived law Eq. (3) describes well 
the mean traffic properties in equilibrium, we further assume that the 
velocity at a certain position x and time t is adapted to the equilibrium 
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value ve(ρ) determined by Eq. (3) during some characteristic adaptation 
time T [5,11]. We describe this adaptation by the most simple 
differential equation: 

dv/dt =(ve(ρ) - v) / T,				                  (4) 

and further consider the velocity and density as mutually dependent 
field variables v=v(x,t) and ρ=ρ(x,t). In accordance with this dv/dt in 
the differential Equation (4) is the convective derivative: dv/dt=∂v/∂t + 
v ∂(v)/∂x. The fundamental dynamic law of the traffic field is then given 
by the continuity equation: [11] 

∂ρ/∂t +∂(ρv)/∂x=I(x,t)                                                                         (5)

in which I(x,t) denotes the traffic source term. If we start analysis at 
a certain point xo where the traffic flow rate Q(t) is forecast, then the 
source term can be described by the expression: I(x,t)=Q(t) δ(x-xo) in 
which δ denotes the Dirac’s delta function. 

Drivers try to adapt their velocity predominantly to the leading car, 
but with a delay specified by the reaction time τ. Consequently, when 
describing the adaptation of velocity v at the position x and time t, the 
density in Eq. (4) has to be taken at some position Δx ahead of x and at 
the delayed time t - τ. A typical value of ∆x is several car lengths: ∆x ~ 
3λ. Similarly the relaxation time is several reaction times:  T ~ 3τ. 

Expressions (3-5) represent a non-linear system of partial 
differential equations whose solution can be determined by standard 
numerical methods [5]. For this purpose initial and boundary 
conditions must be given. A typical example is described in the next 
section.

Development of Traffic Jam 
In order to demonstrate the performance of the described method 

we consider the point of maximal traffic activity on a high-way near 
Ljubljana where the fog from a swamp often disturbs the traffic. Its 
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Figure 9a: Distributions of traffic field variables shown in ground plan: top-flow rate, middle-velocity, bottom-density. 

position is shown by the vertical and horizontal lines in the top diagram 
of the forecasting unit shown in Figure 4. The dependence of flow on 
time is shown by the bottom right record. Two peaks in this record 
denote rush-hours. 

Our next goal is to demonstrate what would happen during the 
selected day if the speed limit at the selected point is decreased as shown 
by the reduction factor in Figure 8. For this purpose we consider a road 
of 28 km length with the disturbed section from 22 km on. We assume 
that the desired speed is reduced from 130 km/h on the free road to 
60 km/h by the disturbed section. To solve the problem, we select the 
cell size in the spatial direction equal to ∆x=200 m, and the time step 
equal to ∆t=1s. We next consider homogeneous initial and boundary 
conditions equal to 0, so that the traffic state is completely determined 
by the incoming flow rate Q(t) shown by dotted line in the bottom right 
record of the forecasting module in Figure 4. For the calculations we 
consider the time interval that contains the selected day. 

The calculated distributions of field variables are shown in Figure 
9a and 9b using color coding for the amplitude of field variables. The 
flow enters the road section at x=0 and moves in the x direction. At the 
rush-hour its amplitude first grows with time t to the maximum and 
then falls again. In the disturbed region its maximal value is decreased 
and the peak is flattened. The velocity drop is observable in the graph 
of its distribution at the middle of Figure 9a and 9b as blue downward 
step. At low t the velocity is high at low x, but when cars pass the 
disturbed section their velocity is decreased due to drop of the desired 
speed. Simultaneously with decreasing velocity the density is increased 
as shown at the bottom of Figure 9a and 9b. With increasing time and 
flow at rush-hour the reduction of velocity in the disturbed region leads 
to evolution of jam in front of the disturbed section with an expressive 
peak in time. At the peak the jam exhibits wave-like structure indicating 
stepwise movement of cars [2-5]. When the rush-hour maximum is 
passed, the input flow again starts decreasing, which further leads to 
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a decreased density, increased velocity and dilution of the jam by the 
flow. A similar evolution of jam as in the morning is observed also in 
the afternoon rush-hour time. From the graphs of field variables we can 
forecast the length of jam and its spreading velocity. 

Estimation of Jam Length
Macroscopic modeling of traffic by partial differential equations 

yields rather general description of the traffic jam evolution at the 
bottleneck in terms of dynamic field variables. However, for practical 
purposes most often just the length of traffic jam is sought, and there 
appears a question how to avoid numerical treatment of partial 
differential equations. For this purpose we turn to an approximate 

treatment of the complete problem and consider the case when the 
input flow Qi is increasing with time. As long as the input flow Qi 
is below the capacity of the disturbed section Qo we assume that all 
cars pass it fluently. But, when the input flow surpasses the capacity, 
a portion of the input flow:   ∆Q=Qi – Qo is stopped in front of the 
disturbance. This difference then causes increasing number of cars 
in front of the disturbed section and an evolving jam. If we know the 
dependence of input flow on time, we can estimate the number of 
stopped cars Z by integrating ∆Q(t) with respect to time. We can then 
estimate the corresponding jam length L by multiplying the number 
of stopped cars by the distance between cars that corresponds to the 
decreased desired speed. 

To demonstrate the approximate characterization we again 
consider the example from the previous section. Figure 10 shows the 
input and the output flow by dotted and solid lines, respectively. The 
latter is determined by the reduced capacity that determines the level of 
the horizontal section in the graph. The corresponding number of cars 
Z in the jam is shown in Figure 11. 

Diagram on Figure 9 renders possible a rough estimation of 
the speed of jam propagation in backward direction that could be 
compared with the result shown on Figure 11. The reduced speed limit 
does not permit all incoming cars during the rush-hour time to pass the 
disturbed region when the input flow surpasses the reduced capacity 
1422veh/h. The difference between input and output flow contributes 
to the formation of jam. If we assume approximately linear increasing 
and decreasing of flow from ~1400 to ~1800 and back to ~1400 veh/h 
in the time interval from 6-8 h, then we obtain that about ~200 veh/h 
is stopped in this interval which yields in 2 h about N~400 vehicles. If 
we assume quadratic dependence of flow on time during rush-hour we 
obtain the value N~540, which coincides well with the height of the 
first peak in Figure 11. If all cars were closely packed and not moving, 
the corresponding length of jam would be L ~ N λ~3 km. But the cars 
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are moving in the jam approximately with the speed determined by its 
decreased desired speed, and consequently the approximate distance 
between them is  r=λ + τw ~ 20 m that yields four times longer jam 
length L~12 km. This value coincides well with the length of the first 
peak shown in Figure 9. The time T of waiting in jam can be estimated 
as: T=L / v(ρ). 

Estimation of the jam length is less reliable than the corresponding 
number of cars, since the distance between cars is changing with their 
velocity that depends also on properties of the jam. However, the 
determination of the number of stopped cars is only approximate since 
the jam can also influence the dynamics of the flow in the bottleneck 
itself. More accurate determination of the jam length can thus be 
obtained just by a strict accounting of the flow dynamics, described 
by partial differential equations. Irrespectively of this deficiency, we 
can introduce the most important jam characteristic by the integral of 
stopped flow rate that is applicable for prediction of jam evolution. An 
advantage is that for this purpose we just need the predicted input flow 
in dependence on time and the reduced capacity. 

Diagrams shown in Figures 10 and 11 indicate the properties of 
jam and have therefore been selected for demonstration by bottom 
graphs of GUI shown in Figure 4. The desired speed, the number of 
operating lanes, and the display of variable N or T can be set below the 
graphs in the GUI window. The desired speed must be determined by 
the user based upon the properties of the disturbance in the critical 
section. The proper value in a severe weather can be estimated from 
the friction coefficient and visibility distance that can be extracted from 
forecast weather data [14]. This further renders possible rather simple 
forecasting of the traffic jam evolution and estimation of the number 
N of jammed cars as well as the time T of waiting in the jam. The GUI 
is developed as a stand-alone application for MS Windows, while its 
adaptation to web pages and mobile telephones is still in preparation.

Conclusions
We have shown that in spite of rather complex, non-linear, and 

stochastic character of traffic, it is possible to forecast the traffic 
flow rate statistically and to model the equilibrium properties of the 
complete phenomenon by the fundamental diagram [5,11]. This 
diagram provides for definition of road capacity and rather simple 

estimation of properties of traffic jam evolving at the bottleneck. 
Inclusion of the relaxation equation and the continuity equation into 
description further stretches the applicability of our macroscopic 
description to non-equilibrium states [2-6,10,11]. These two equations 
describe the adaptation of velocity to its equilibrium value and the 
adaptation of the density to the velocity and with it related traffic 
flow rate. The flow rate is applicable also for description of the traffic 
source term in the continuity equation which further renders possible 
forecasting of traffic jam evolution caused by various disturbances. For 
this purpose the flow rate predicted by previously developed intelligent 
unit is readily applicable. The presented characteristic example of jam 
evolution reveals most characteristic features of this phenomenon. The 
method presented here has been developed recently, and consequently, 
it still needs a thorough experimental verification of performance 
in real situations before practical applications of the corresponding 
graphic user interface. The operation of GUI is adapted to traffic data 
from Slovenian roads, and consequently, comparison of the proposed 
method and its performance with similar methods of other authors 
could hardly be directly performed.
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