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Prologue
Construction of a continuous function from given discrete data, 

which is referred to as interpolation, has been applied in various 
fields since time immemorial. In classical Numerical Analysis and 
Approximation Theory, there are several interpolation methods 
(for instance, polynomial, trigonometric, spline, rational) that 
can be applied to a specific data set, according to the assumptions 
that underlie the model to be investigated. Undoubtedly, these 
traditional (non-fractal) nonrecursive techniques constitute a great 
tool to model various physical phenomena. However, these methods 
produce interpolants with Hausdorff dimension one and hence 
if a given data set is more complex and irregular (for instance, data 
sampled from real-world signals such as financial series, seismic data, 
and bioelectric recordings), then they may not provide satisfactory 
results. Consequently, to model these signals, need for interpolants 
that are nondifferentiable in dense set of points in the domain arose 
quite naturally. About a quarter century has passed since Barnsley 
[1] introduced Fractal Interpolation Function (FIF), a concept which
soon turned out to be the right frame for a constructive approximation 
theory of non-differentiable functions, by using the notion of Iterated 
Function System (IFS). In view of their diverse applications, there has 
been steadily increasing interest in the theory of fractal functions, and 
it still continues to be a hot topic of research. Following the publication 
of Fractals Everywhere [2], a beautiful exposition of IFS theory, fractal 
functions and their applications, various related issues such as calculus, 
Holder continuity, convergence, stability, smoothness, determination 
of scaling parameters, and perturbation error have been investigated 
in the literature [3-13]. The concept of smooth FIFs has been used to 
generalize the traditional splines [14-18] and to demonstrate that the 
interaction of classical numerical methods with fractal theory provides 
new interpolation schemes that supplement the existing ones. Various 
other extensions of FIFs include multivariable FIFs [7,9,16,19-25] 
generated by using higher-dimensional or recurrent IFSs, the hidden 
variable FIFs produced by projecting the attractors of vector valued 
IFSs to a lower-dimensional space.

The notion of FIFs can be used to associate a family of fractal functions 
f α  parameterized by a suitable vector α  with a prescribed continuous 

function f on a compact interval I. Using this “fractal perturbation”, 
Navascues introduced the operator : (I) (I) via (f) fF c c Fα α α→ =
and its extension to more general spaces (I)pL using standard density 
arguments. These maps tend to bridge the gap between smoothness of 
classical mathematical objets and pseudo-randomness of experimental 
variables, breaking in this way their apparent diversity. Navascues and 

coworkers [17,18,22] contributed to the theory by defining ”rough” 
approximants as perturbation of the functions generally used in 
classical approximation (polynomial, trigonometric, rational, etc.) via 
this operator. Recently [23], the authors investigated conditions on the 
elements of the IFS so that the perturbation preserves the basic shape 
properties inherent in the original function, thereby paving a way to 
shape preserving fractal approximation, an interesting area that needs 
further exploration at least in our opinion.

A Brief Outline of Fractal Interpolation Function
By fractal function, we mean basically a function whose graph is 

the attractor of an IFS, which was first constructed as an interpolant 
as follows. Consider a set of data points 2{( , ) : 1, 2,..., }n nx y n N∈ =

with increasing abscissae. Set 1[ , ] {1,2,...., N 1}NI x x= = − . For
1,Ni −∈ set i i 1[x , x ]iI +=  and let :i iL I I→ be affine maps such that 

1 i N i 1(x ) x , (x ) xi iL L += = Let [c,d],K I c d= × −∞ < < < +∞  Consider 
N − 1 continuous maps : K [c,d]iF → satisfying 

i i i 1 1 i N N i| (x, y) F (x, y*) | r | * |;F (x , y ) y , (x , y ) y 1i iF y y F− ≤ − = = +  (1)

Where , , * [c,d]x I y y∈ ∈ , and 0 1.ir≤ < Now define

i i i N 1: [c,d] K, W (x, y) : (L (x),F (x, y)) ii iW K I −→ × ⊆ = ∀ ∈

 For the collection *
1: { ; : },i NI K W i −= ∈ which is termed IFS, 

Barnsley presented the following seminal result.

Theorem 1 (Barnsley [1]) Corresponding to the IFS 
*

i N 1{K; W : i }I −= ∈ there exists a unique set G satisfying

1 (G)i N iG U W∈ −=


 and G is the graph of a continuous 

function :g I →
 satisfying g(xn)=yn for n=1, 2,…N. Let 
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Abstract
This article is targeted to provide a brief and coarse discussion on theory of fractal functions and their recent 

developments including some of the researches of the authors. Materials on fractal functions provided by this paper 
is not claimed to be exhaustive, but is intended to be read before or in parallel with technical papers available in the 
literature on this subject. We have made an earnest attempt to supply an overall flavor of the subject of univarite 
fractal approximation and useful source of links to assist a novice and perhaps to an expert in fractal functions too.
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* * *
1 1 N N: {g c(I) : g (x ) y ,g (x ) y }G = ∈ = = be endowed with the uniform 

metric. If *: , (Tg )T G G→
1 * 1

i i 1(x) : F (L (x),g oL (x)), x I ,i i Ni− −
−= ∈ ∈  then g is the unique xed 

point of T.

Definition 1 The function g appearing in the previous theorem is 
called a Fractal Interpolation

Function (FIF) and it fulfills the functional equation 
i i(L (x)) F (x,g(x))g = for 1Nx I and i −∈ ∈ .

Most widely studied fractal functions in the theory and applications 
heretofore are defined by the

IFS *
i i{K;(L (x),F (x, y)) : i }I J= ∈  with constituent maps

i i N 1(x) a , (x, y) (x), ii i iL x b F y qiα −= + = + ∈                        (2)

Where i| | 1α <  and qi are suitable continuous functions so that the 
maps Fi satisfy conditions in (1). A possible explanation for the choice 
of this special class of IFS is that the corresponding FIF is explicitly 
integrable, a satisfactory theory for moment integrals can be developed 
and it is easy to discover functional equations obeyed by Fourier and 
Laplace transforms. Following Theorem 1, the FIF g can be constructed 
recursively using the functional equation 

i i i i N 1(L (x)) F (x,g(x)) (x) q (x), x I, ig gα −= = + ∈ ∈                      (3)

In what follows, we shall get into some specifics of particular 
flavors of fractal interpolation for the benefit of the reader, 
specifically for one who wants to critically compare the FIF 
scheme with schemes available in the traditional Numerical 
Analysis. It is plain to see that the presence of free parameters  
i, which determine Hausdorff dimension of the graph of the interpolant, 
provides additional flexibility to the choice of particular function 
in contrast to the unicity inherent in a specific kind of traditional 
interpolation. However, finding an “optimal” scale vector is a quite 
challenging problem for which different approaches are discussed in 
the literature. Note that apart from this recursive functional equation, 
the FIF g possesses an explicit representation in terms of an infinite 
series [11]. Further, g can be expressed using the technique of operator 
approximation, see [13]. As with wavelets and many other new function 
types, “closed form” expressions for FIF generally take the form of one of 
the two types of algorithms, chaos game (a Markov chain Monte Carlo 
algorithm) and deterministic iteration; both approaches are highly 
accurate and have been reported in many places in the literature [5,6]. 
In many cases, evaluation of a FIF at a specific point can be achieved 
by summing a rapidly convergent series. The functional equation for 
the FIF provides a rule to predict the values of the interplant at refined 
mesh points, and thus may remind a subdivision scheme available in 
the traditional Numerical Analysis. Let us note here that a FIF, in fact, 
provides a subdivision scheme, and the fact that it arises from an IFS 
makes the mathematical treatments such as convergence, smoothness, 
etc. of those subdivision schemes relatively easier to handle. Most of 
the traditional interpolants have locality, whereas particular feature 
of the fractal methods is that they explore the self-similarity and are 
global, in general. The benefit is that subtle global dependencies reflect 
nature and may lead to harmonious and attractive non-cookie cutter 
forms, shapes and approximants. The same is true for Bezier curves, 
much used in computer graphics and design packages. It should be 
borne in mind that for particular values of the parameters, the fractal 
interpolation schemes can recapture local traditional schemes.

Fractal Functions in Approximation and Fractal 
Operator

Reviving the spirit of the previous section, let (I)f c∈  Consider (2) 
with i(x) f o (x) (x),i iq L bα= −

x I, b : I∈ →
 is a continuous function, b(x1)=f(x1), b(xN)= 

f(xN), and b ≠  f. In view of (3), corresponding fractal function f α

satisfies.
1

i i 1(x) f(x) (f b)oL (x) x I ,i Nf iα αα −
−= + − ∀ ∈ ∈                                        (4)

Notice that if 1: 0 Nα −= ∈  then f fα =   and also that 
N 1( 1,1)α −∈ −  is arbitrary. Consequently, (4) associates a family of 

continuous functions with each fixed (I)f c∈ . The degrees of freedom 
offered by this procedure may be useful when some problems combined 
with approximation and optimizations have to be approached. 
Assume that the continuous function b depends linearly on f, say for 
instance, b=Lf, where : (I) c(I)L c → is a linear and bounded operator 
with respect to the uniform norm or pL  norm on C(I). Then the map 

: (I) c(I),F (f) fF cα α α→ =  defines a linear operator referred to as an 
α -fractal operator. For various properties of this map, its extension 
to pL spaces, and related developments, the reader is urged to refer 
researches  f Navascu´es and coworkers scattered across the literature. 
However, here let us note the following: (i) the diversity option obtained 
due to the presence of parameters can be explored to choose best in 
a problem of approximation combined with optimization, (ii) the 
perturbation methodology described may serve to modify or preserve 
the properties of f, for instance, to reduce the order of regularity of 
the classical approximant, (iii) the procedure provides new geometric 
possibilities, that is, in the non-smooth case, the graph owns a fractal 
dimension and this parameter provides an index for experimental 
signals.

Let us conclude this short article by hinting at the applications of 
fractal functions. Having provided the above brief introduction to fractal 
interpolation and its interconnection with classical approximants, 
it is not difficult to find applications of FIFs in almost every field 
wherein information available in finite number of grid points has to 
be modeled with a continuous function. The realm of applications 
includes geometric design, data visualization, reverse engineering, 
physics and chemistry, image compression, signal processing, and 
wavelet theory. The reason for this variety of applications lies in the 
underlying complicated mathematical structure of fractal functions, 
produced with simple recursive construction. It has been noted that for 
certain problems, they provide better approximants than their classical 
nonrecursive counterparts. For a specific application, let us mention 
that in reference [21], fractal interpolation of electroencephalographic 
recordings is used to describe the increase in the bioelectric complexity 
during some tests of attention in children and to compute other 
electroencephalographic parameters. Many areas of fractal functions 
and their applications are yet to be explored, for instance, calculating 
Hausdorff dimension of a general FIF is a challenging open problem.

We strongly believe that the field of fractal functions has bright 
future, however to be able to contribute to it, the reader should leave the 
idea of staying in the comfort of well-known classical approximation 
theory and start enjoying the benefits of the more versatile fractal 
approximants, to supplement the former if not to replace.
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