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Abstract

This paper concerns with the convergence of the Monge-Ampere-Boltzman system to the in compressible Euler

Equations in the quasi-neutral regime.
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Introduction and Main Results

In this paper, we are interested in the hydrodynamical limit of the
Boltzman-Monge-Ampere system (BMA)

SHEVXf+Vxge.V f=Q(f*, ) (1.1
det(I + eD*¢*)= p* (1.2)

where f¢(t, x,) = 0 the electronic density at time ¢ > 0 point x €[0,
1]%= Td, and with a velocity & € R%, and Id is the identity matrix defined
by

1 0 0
01 0 :

0 0
0 0 1

The spatially periodic electric potential is coupled with ¢* through
the nonlinear Monge-Ampere equation (1.2). The quantities ¢ > 0 and

p(t, x) = 0 denote respectively the vacuum electric permittivity and
pi(t, x)= f(t, x,6)dE. (1.3)

Q(f, f) is the Boltzman collision integral. This integral operates
only on the {—argument of the distribution f and is given by

o f ) txm) =M1, ((ff)' (5 —f"“ffjb(f: &, 0)dodé,
where the terms I , () and ( 12 )’ defines, respectively the values

fetx, &), fo(t,x, &) and (2, x, &) with &and & given in terms of

(& €RYand o€ Sf_l = {0' e st lo.l> ofl} by

gpofth £, £rh fo8,

The aim of this work is to investigate the hydrodynamic limit of the
(BMA) system with optimal transport techniques.

Note that

Lo QU fYAE= 0 EQU, f)AE = [ & QU f)AE=0,i=1,2,....d.
The linearization of the determinant about the identity matrix gives
det(I +&D*¢*)=1+&> Ag*+O(&*).

Where I, represents the identity matrix.

So, one can see that the BMA system is considered as a fully non-
linear version of the Vlasov Poisson-Boltzman (VPB) system defined by

3 fHEV ferV -V f=Q(f, f*) (1.4)

£2A¢£:p2_1 (1.5)

The analysis of the VPB system has been considered by many
authors and many results can be found in a vast literature [1-10].

In Hsiao et al. [11] study the convergence of the VPB system to
the Incompressible Euler Equations. Bernier and Grégoire show that
weak solution of Vlasov-Monge-Ampére converge to a solution of the
incompressible Euler equations when the parameter goes to 0, Brenier
[12] and Loeper [13] for details. So, is a ligitim question to look for
the convergence of a weak solution of BMA (of course if such solution
exists) to a solution of the incompressible Euler equations when the
parameter goes to 0.

The study of the existence and uniqueness of solution to the BMA
system seems a difficult matter. Here we assume the existence and
uniqueness of smooth solution to the BMA and we just look to the
asymptotic analysis of this system.

Definitions and Recalls

Definition 1

For a fixed bounded convex open set W of RY and a positive
measure on R? of total mass |W|, we note by F[,p] the unique up to a
constant convex function on satisfying

VgeC'(R')NL(dp). L 9(x)dp(x) = Ly g(®[2P]) (v)dy.

Its Legendre-Fenchel transform denoted W[Q,p] the function
satisfying (1.6) VgEC'(RY) G LY(Q,dy) [, 9(V¥[Q.p]ldp(x)=[ g(»)dy. we
may write @ (resp. ¥) instead of @ [Q,] (resp. ¥[Q,p]) if no confusion
is possible.

Remark 2

. Existence and uniqueness of @ is due to the polar factorization
theorem.

. By setting the change of variables y=V¥(x), we get dy=det
D2Y¥(x)dx. So (1.6) can be transformed to:
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VgEC(RY) G LI(Qdy),
0 g(V¥[Q p])p(x)dx = J‘Qg(V‘P (x))det D*¥ (x)dxc (1.6)

Which is a weak version of the Monge-Ampere equation

det D*¥(x)=p(x)

V mapps supp (p) in Q

We assume that BMA system has a renormalized solution in the
sense of DiePerna and Lions [3].

For simplicity, we set

‘X‘Z—\v[p]
0[] x‘/

So that, V¢[p]=V(Z)[p]oV(D[p], and the (BMA ) (p stands for
periodic) system takes the following form

olp]=

and

i[p]=———%

0SBV S = VIV =01 ") w7)
1(0u) =

The energy is given by

_[f 0,%,8)|g] dxdg + = ﬂv(p\ dx

1 2 1 12
= Ej.f(t,x,z';)‘c';‘ dxdi + EJ‘p‘Vgo‘ dx
It has been shown |2| that the energy is conserved.
The Euler equation for incompressible fluids reads

Oy +V.Nv =-Vp,
vy =0.

(1.8)

One can find in Loeper [13] more details for this kind of equations.
Theorem 3

Let f be a weak solution of (1.7) with finite energy, let (tx) —
v(,x) be a smooth C¥([0,T] x T¥) solution of (1.8) for t€[0,T], and
p(tx) the corresponding pressure, let

He(t jftxg\g v (t,x)[ dvde+ = HV(ptx ‘dx
Then

He(t)< Cexp(Ct)(He(0)+€ ).Vt €[0,T]

The constant C depends only on

sup 1V(s..), p(s..),0,p(s..), VD (s..) le_x(r,)

Proof of the Theorem 3
Later, in the section, we need the following Lemma
Lemma 4:

Let G: T%>R be Lipschitz continuous such that I G =0 then for

all R>0 has one
- [l e+ RH]
R

We have
d di1l¢, _r _
EHE =E‘:EJ‘/‘ (t,x,&)(‘v‘ —2§.v)dxd§:$

—J‘f txﬁ 6vv—6v(’; Iaf(‘v —ZE;v)dxdé

From the BMA we have
Ja, f(\v\z 72§.V)dxd<§ =—[v.(r z,x,g)g)(\v\z - 2g.v)dxdg
+[v, ( Vor(Lxe) j(\v\z—zg.v)dxdg
#Jo(rr)(T
The last term is equal to zero from the property of Boltzman
Operator [1,3,5,7-9,11].

i) dxdt,

It follows by integrating by party that

fa, f(\v\z - 2g.v)dxdg =2[ f(6.%.E)eVP (V- &) dvde + 2 £ (tx.8) vprednds
€

Thus

%Ils =[f(exe)ovr-o78

Y+ | £ (6, 2V (7 - E)dsde + | £(1,0E) LV g
.

==[ £ (1,x.8)(F =) VF (T —E)drde +[ £ (1,%,8)(0,7.(F — ) dvde + [ £ (1,3,8)7V¥ (7 ~&) dxde+] f (x,x,g)évﬁvgdxdg
= 71 £ (6,x,8)(V-8)VF (v -&)dxde +J' / (x.x,s_)(v75_)(0,\?&%)4\454 f'(!,x\i)l—,V@.Féthdé
=] £ (6x,8)(7-8) VT (7~ E)dxds - [ £ (1,%,8) (7 ~&) VpdsdE + r(nx@)iwmmg

=A+B+D

Let us begin with the first term A. Use Holder inequality and that
\Vﬂ < C to decompose

A= [ £ (1x2)(7-8).1 (10 8) V3 (5 7)

< U F(6xe)E —vzdxdi};.[C(J F(6xe)E —vzdxdg)};

<CH] Hf =C.H,

From the second term D, one has
1 1 1
D= —VovEdxdeE =—| pyVo=—|vVopd
[[7 (08 vortands =—[ sV o =—[7Vidp
From the definition of @, we have
D=ljv(vq>).v¢(v<b)dx=1jv(x+sv¢)vgo
€ €

-v(x))Ve.

Since V is divergence free, once gets

1_ _
—EJ.VV(IH'(V()HSV@

2
B<0+C[|Vg| <CH,

Consider now the last term D.
D=-[f(t,x,&)0V pdxdé + %j ft,x,E)EN pdxdé
= [ 16,00V pdxdé + [ £(t,%,6)EV pdvdé

But since v is divergence fre we have jV.Vp =0. Thus form
Lemma 4

(G = V,Vp) , once has
~[poVp<C(e®+H.)-

Since it costs no generality to suppose that for all t€[0,T],[P(t,x)
dx=0,

6= 0\ <
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we get from the equation of conservation of mass

[fexo59p=-[V(fax6p=[opp="[pp-[pL

By Lemma4 and setting Q(t)=—[pp we can deduct that

[fexeevp<cE +H)- ‘%

Thus
D<C.(H +52)7@
dt
We deduce then the following inequality

%:(HE +0)<CH. +60E*) (2.1)

Still using 4,

1
100 [ ppls =+ H.()
Thus

H 40> H ()-C:

So once can transform (2.1) as

S+ Q) CUH +0)+ ¢

And by Gronwall’s inequality [11] yields
H_(1) + 0(t) < (H.(0) + Q(0))exp(Cr)
Finally we conclude that

H. (1)< C(H, (0) + C=)exp(C1)

Which achieves the proof of the theorem.
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